
EBOOK TERRAFORM

Declarative Cloud Infrastructure
Management with Terraform

How to Provision Cloud Infrastructure
with a Single Workflow

UPDATED FOR 2022

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Table of Contents
What is Infrastructure as Code? . 04

Developing In a Cloud Native & Multicloud Landscape . 06

What is Terraform? . 09

Working with Terrafrom . 11

Getting Started with the HashiCorp Configuration Language (HCL) 15

Using Terraform to Provision Linode Environments . 17

Linode Kubernetes Engine and Terraform . 18

Importing Existing Infrastructure to Terraform . 19

Terraform Automation Options . 20

Comparing Terraform and Ansible . 22

Other Infrastructure as Code Tools and Integrations . 25

About . 27

 | 03

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Section 1

Introduction
Terraform is one of the most popular cloud infrastructure provisioning tools that supports Infrastructure
as Code (IaC) principles while working with constantly scaling infrastructure and/or multiple cloud providers.
With a growing ecosystem of providers and plugins to integrate Terraform with DevOps workflows,
Terraform is continually increasing in market share and usability.

In this ebook, you will learn:

 · what Terraform is and how it works with your cloud provider(s);

 · benefits of using IaC tools, especially Terraform;

 · initial steps to install Terraform and use the Linode Terraform Provider;

 · basics of the HashiCorp Configuration Language (HCL);

 · when to use Terraform instead of (and with) Ansible;

 · and more.

Linode cloud computing services from Akamai supports development workflows by strongly focusing
on integrating our cloud platform with IaC tools you already use, and providing accessible cloud infrastructure
with straightforward pricing.

Using Linode and Terraform together is the best way to follow along. Sign up for a new Linode account today
and you’ll get $100 in free credit.

Introduction

https://www.linode.com/lp/terraform-ebook-resources/

 | 04

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

What is Infrastructure as Code?
Infrastructure as Code (IaC) is a development and operations methodology that allows resource deployment
and configuration to be represented as code. This methodology is conducive to automation, makes complex
environments more manageable, and offers a number of additional benefits

 · Reproducible environments that can scale up or down rapidly to help diagnose problems and improve
 performance, without affecting a production environment.

 · Manage thousands of servers and services in a clean interface to run updates and implement changes.

 · Collaborate on infrastructure configuration via a Git repository or other tool you’re already using,
 instead of everyone needing access to a cloud infrastructure console.

 · Automated checks and balances to help you test and track changes to your infrastructure.

Terraform is a well-known and widely used tool to manage infrastructure as code. As a tool that’s extremely
simple to use and requires minimal code experience, Terraform supports developers and organizations
in streamlining cloud infrastructure management without changing their cloud providers or resources–only
slight shifts in their infrastructure management workflow.

What is Infrastructure as Code?

 | 05

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Infrastructure as Code and Configuration Management
Although these two concepts can often simultaneously apply to your workloads, it’s important to understand
the differences between configuration management, provisioning management, and infrastructure as code–
and in particular, where Terraform sits in that relationship.

Infrastructure as Code
Using source code to treat cloud and IT infrastructure like software in order to configure and deploy, and rapidly
replicate and destroy, infrastructure resources.

Configuration Management
Providing consistency of systems and software over time. Configuration management happens repeatedly
to keep server software configurations up to date and operational for a product or service to maintain its
performance and reliability.

Operations performed through an IaC tool like Terraform fundamentally affect the existence of resources
or infrastructure, not perform ongoing maintenance or optimization, hence Terraform is not a configuration
management tool.

IaC and Linode
With more organizations, individuals, and services relying on cloud infrastructure than ever before, Linode aims
to make scaling and managing resources as painless as possible. However, we understand there are limitations
to what we can do that is native to the Linode platform or our users’ preferences for existing third party or open
source tools. That’s why we offer integrations with IaC tools, to make the alternative cloud more accessible for
workloads of all sizes.

What is Infrastructure as Code?

Want to learn more IaC tools
in addition to Terraform?

DOWNLOAD TRY IAC EBOOK

Check out our Try IaC educational series,
taught by Justin Mitchel of Coding for
Entrepreneurs. Watch on-demand video
tutorials and download an in-depth ebook.

START VIDEO SERIES

https://www.linode.com/content/try-infrastructure-as-code-ebook-series/
https://event.on24.com/eventRegistration/EventLobbyServletV2?target=reg20V2.jsp&eventid=3531443&sessionid=1&key=545594BA4BB1A1E5F958A643F3E55E01&groupId=3167416&partnerref=content_ebook_terraform&sourcepage=register

 | 06

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Developing In a Cloud Native
and Multicloud Landscape
A key component and requirement of cloud native or multicloud applications is portability. Infrastructure
as Code, at its core, is portable and universally compatible with all major cloud providers. Cloud native
development, even with a single provider, is built on granular separation of each component and requires
flexible and fast provisioning to keep up with changing resource utilization. IaC tools are a natural fit to build
and sustain the environments your application needs while allowing DevOps teams to do more with less.

Cloud native: Cloud native refers to application architecture that is designed to run on one or more clouds
to build and scale applications from the initial development phase, as opposed to migrating from on-prem
or local infrastructure to the cloud. Cloud native developments utilize modern application development
techniques including containerization, microservices, and declarative APIs.

Another key factor of cloud native deployments is immutable infrastructure, or replacing pieces of infrastructure
as part of significant changes or upgrades instead of making changes on your existing infrastructure. Immutable
infrastructure allows you to deploy and test new versions of each component with your application on fresh
images instead of updating an existing instance. This significantly reduces the chance of an update causing
problems in a production environment. The following example quickly illustrates the differences between
mutable and immutable infrastructure while updating a version of Apache on a web server.

Your production application is running on a virtual machine, currently running Apache that is a few versions
behind, and you want to upgrade to the latest version.

With mutable infrastructure, you perform the upgrades on a separate dev environment that’s running the same
stack, and the upgrade goes smoothly. So you perform the same configuration update in place on your primary
production instance. The update may run according to plan, or you could encounter an issue that affects your
production users.

Developing In a Cloud Native and Multicloud Landscape

Mutable Infrastructure

 | 07

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

With immutable infrastructure, you set up an entirely new instance that’s running the new version of Apache,
and have time to perform tests and make sure everything is working as it should. When it’s time to go live, simply
update your DNS or follow your usual procedure to get a new server into production. When that’s complete,
destroy your old production server.

Developing In a Cloud Native and Multicloud Landscape

There are other considerations to make while designing immutable infrastructure, such as storing all of your
data via a block storage volume that can be easily attached/detached, but this outlines the process of replacing
infrastructure elements instead of upgrading in place. This protects your application from potential failure,
and allows you to frequently make iterative changes and upgrades, instead of needing to roll out major releases
that require more time to build, test, and deploy without disrupting the application’s services.

As the Cloud Native Computing Foundation (CNCF) succinctly states in their charter:

“ These techniques enable loosely coupled systems that are resilient, manageable, and observable.
 Combined with robust automation, they allow engineers to make high-impact changes frequently
 and predictably with minimal toil.”

Immutable Infrastructure

https://github.com/cncf/foundation/blob/main/charter.md

 | 08

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Developing In a Cloud Native and Multicloud Landscape

With the focus on containerization and distributing application layers for increased performance and resiliency,
here are quick definitions on the most common types of infrastructure deployments:

 · Multicloud: Using two or more public clouds to host and scale your application. This can be as simple
 as using one cloud provider for compute instances and another for scalable storage like Object Storage.

 · Hybrid Cloud: Using a combination of on-prem infrastructure and public cloud providers. For example,
 an on-prem infrastructure resource can access and interact with cloud-based infrastructure.

 · On-Premise: Often shortened to “on-prem”, this refers to IT infrastructure that is located within
 an organization’s controlled IT boundary that is not the cloud.

With more cloud providers and services to choose from, multicloud is rapidly becoming the standard.
Knowing tools like Terraform become more important to provide increased control and less overhead when
deploying infrastructure. With Terraform, there is no need to build new environments from scratch.
Everything can be templated while still providing version control.

Using cloud-agnostic tools like Terraform simplifies infrastructure management across providers, and allows
developers to provision infrastructure from multiple providers without needing to write different scripts
or maintain a separate set of images.

 | 09

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

What is Terraform?
Terraform is an IaC tool that focuses on creating, modifying, and destroying servers and cloud resources.
Not to be confused with configuration management software, Terraform does not manage the software
on those servers. Any public Cloud with an API can be a provider within the Terraform lifecycle.

Terraform simplifies cloud resource and service management with a consistent CLI and transforms cloud API
calls into declarative configuration files. Terraform is a significant resource when your cloud infrastructure
hits critical mass. Traditionally, anything more than a handful of servers requires an investment in a system
management tool and can be difficult to maintain for smaller teams or organizations, especially when working
with multiple cloud providers.

Built by HashiCorp, Terraform is a declarative tool written in Go that employs configuration files in a custom
language for infrastructure management that is both human and machine-readable. Being declarative means
you write code in Terraform to describe what your infrastructure should look like at the end state, or provide
a blueprint of what Terraform should execute for you. Unlike an imperative tool, which would run each line
of script or code to reach an outcome, a declarative tool is only concerned with the end state. Think of imperative
as caring about “how” something happens while declarative only cares about “what” happens.

The benefits of this methodology and of using Terraform include:

 · Version control of your infrastructure
 Because your resources are declared in code, you can track changes to that code over time in version
 control systems like Git.

 · Minimization of human error and provisioning inconsistencies
 Terraform’s analysis of your configuration files will produce the same results every time it creates your
 declared resources. In addition, instructing Terraform to repeatedly apply the same configuration will
 not result in extra resource creation as it tracks changes made over time.

 · Better collaboration among team members
 Terraform’s backend allows multiple team members to safely work on the same configuration
 simultaneously and securely.

 · Increase in self-service across providers
 The need to log in to various management dashboards and understand how to provision resources
 is eliminated when you can rely on performing these basic operations through Terraform.

 · Consistency for management and compliance needs
 With Terraform, you provide a blueprint of your cloud infrastructure’s desired state in an accurate and
 concise way that describes what the end result should look like.

What is Terraform?

 | 10

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Since Terraform uses the same language and framework regardless of cloud provider, the need for developers
and administrators with provider-specific management skills or certifications decreases. When this essential
management can be streamlined through Terraform, it reduces complexity and the need for more specific skills
that can take additional time to achieve proficiency in.

To demonstrate Terraform’s simplicity, here’s a typical Terraform deployment Terraform for a web application
running on Linode.

What is Terraform?

 | 11

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Working with Terraform

Working with Terraform
Instead of running commands line by line to create infinite resources based on code you write, you create your
architecture within Terraform and tell it to execute the actions needed to match what you mapped out in your
Terraform file, or .tf. The .tf is accessible to your cloud providers via API endpoints.

Terraform configuration files are written in the HashiCorp Configuration Language (HCL), which breaks down
critical commands into these elements.

 · Block: Container for content, usually used to define the configuration for a resource or service,
 like an instance from a cloud provider.

 · Argument: Syntax construct that assigns a value to a name, appearing in a block.

 · Expression: Syntax that represents value, and used as values within arguments.

Terraform offers plugins, called “Providers,” to interface with different cloud hosts. Terraform requires
a supported API token from your cloud provider(s), that allows you to use HCL to modify your infrastructure
architecture. Terraform can also integrate with SaaS platforms like GitHub and Twilio. Terraform takes elements
of critical infrastructure that are connected and makes it possible to provision and manage these different tools
in one ecosystem using one language.

 | 12

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Terraform Installation Overview
To start using Terraform to manage new or existing cloud infrastructure, the bulk of the work is in initial setup
and making sure your resource declarations and variables are set up correctly. When you become familiar with
your Terraform provider’s plugin and how to both define and run commands on your resources, it becomes
significantly easier to scale your cloud infrastructure and manage many resources with just a few lines of code.

The initial Terraform installation does not contain plugins for cloud providers out of the box. Like most other
cloud providers, Linode is available as a provider plugin within Terraform. Providers are added and configured
after completing the initial installation.

Get started by downloading Terraform.

Once you have Terraform installed on your development machine, run the following command to make sure it’s
working correctly:

 terraform -v

The output for a successful Terraform installation will look something like this, which represents the Terraform
version number you downloaded and installed successfully.

 Terraform v0.01.01

From there, you can finish following Linode’s Beginner’s Guide to Terraform to complete your setup and get
ready to start working with cloud infrastructure resources on your preferred provider(s).

Working with Terraform

https://www.terraform.io/downloads
https://www.linode.com/docs/guides/beginners-guide-to-terraform/

 | 13

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

To download the plugin for your preferred provider, head to the Terraform Provider Registry site and search for
your provider. Or, for example, head directly to Linode’s Provider page.

Each provider has a code snippet that you can paste into a Terraform file. With the code snippet added, you can
run the terraform init command from a terminal to install the plugin.

 terraform {

 required_providers {

 linode = {

 source = “linode/linode”

 version = “version number”

 }

 }

 }

 provider “linode” {

 # Configuration options

 }

Working with Terraform

https://registry.terraform.io/browse/providers
https://registry.terraform.io/providers/linode/linode/latest

 | 14

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Create a personal access token from the Linode Cloud Manager and select the Linode products and services the
token should be able to read, or both read and write, and you’re ready to start creating Linode resources using
Terraform.

Using Terraform requires a certain level of familiarity with the Linode API, in addition to learning HCL.
Fortunately, the most critical functionality of Terraform works with just a handful of intuitive commands.

Working with Terraform

 | 15

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Getting Started with the HashiCorp
Configuration Language (HCL)
HashiCorp Configuration Language is the custom language created by HashiCorp to use within all of their
products. HCL is designed to be readable and machine friendly, which also makes it much easier to take full
advantage of Terraform’s declarative benefits in terms of defining and modifying your cloud resources.
It is possible to use JSON for Terraform deployments, but HCL is strongly recommended, and all examples
provided in this ebook use HCL.

Here are the essential components of HCL and what will make up your declarative cloud resource configuration.

 · Resources: Infrastructure resources that can be managed by Terraform including compute instances,
 DNS records, and network resources.

 · Dependencies: Terraform resources that depend on another resource to exist. When one resource
 depends on another, it will be created after the resource it depends on, even if it is listed before the
 other resource in your configuration file.

 · Input Variables: A symbolic name associated with a value (also referred to as just Variables).

 · Resource Declarations: Correspond with the components of your Linode infrastructure: Linode instances,
 Block Storage volumes, etc.

 · Resource Provisioners: Scripts and commands in your local development environment or on
 Terraform-managed servers that are performed when you apply your Terraform configuration.

Refer to Terraform’s Glossary to get to know the other various terms you will encounter while using Terraform,
in addition to some cloud computing terms you may not be familiar with.

Getting Started with the HashiCorp Configuration Language (HCL)

 | 16

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Here’s an example of a Linode resource

Getting Started with the HashiCorp Configuration Language (HCL)

 provider “linode” {

 token = var.token

 }

 resource “linode_instance” “example_instance” {

 label = “example_instance_label”

 image = “linode/ubuntu20.04”

 region = var.region

 type = “g6-standard-1”

 authorized_keys = [var.ssh_key]

 root_pass = var.root_pass

 }

 variable “token” {}

 variable “root_pass” {}

 variable “ssh_key” {}

 variable “region” {

 default = “us-southeast”

 }

An example of a dependency would be a DNS record for this example instance. Though it will be written as
a separate resource, its existence in your overall infrastructure depends on the example Linode in order to work.

Some use cases will require the use of provisioners. However, they often add complexity and uncertainty to
Terraform usage and are considered more advanced. Most provisioners are declared inside of a resource
declaration. When multiple provisioners are declared inside a resource, they are executed in the order they
are listed. Check out the full Terraform documentation for a list of provisioners and how to use them.

https://www.terraform.io/language/resources/provisioners/syntax

 | 17

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Terraform Commands & Using Terraform
to Provision Linode Environments
The Linode Provider can be used to create Linode instances, Images, domain records, Block Storage Volumes,
Object Storage Buckets, StackScripts, and other resources. Terraform’s official Linode provider documentation
details each resource that can be managed.

Interacting with Terraform takes place via its command line interface. The Terraform CLI allows you to access and
control your cloud infrastructure resources using Workspaces. Using multiple workspaces is recommended to
manage separate testing and production infrastructures.

Key Commands:

 · Init: Initializes Terraform, checks and downloads available provider plugins, and downloads the plugins
 for the providers you selected and provided API tokens for in your .tf file.

 · Plan: Shows just a preview of the changes that will take place, including a list of resources that will
 be created or destroyed. (This step is optional, but strongly recommended, especially for production
 environments.)

 · Apply: Applies the configuration changes and creates / modifies resources in your provider account(s).

 · State: Initializes the ability to examine the current state of your .tf file. Use the state subcommand list
 to see all resources in your project. This is a useful way to get a wider snapshot of all the resources in your
 project versus scrolling through your .tf file where your resources are defined.

 · Show: See a more detailed output of a resource’s information after running the state command, including
 information that can only otherwise be found in the provider’s console.

Terraform Commands & Using Terraform to Provision Linode Environments

Pro-tip
This is the simplest way to view an individual resource’s ID, region, and IP address, among
other information, while staying in your Terraform environment.

 · Destroy: By default, this command destroys all resources present in that .tf file, without removing the
 code from the file, in case you want to immediately recreate all those resources or be able to replicate
 that setup at another time.

 Note: To remove one specific resource from your provider, you can either delete or comment out that
 resource’s information in the .tf file, and that individual resource will be destroyed the next time you run
 the apply command.

This is just the list of commands to help you get started with the basics of Terraform. Read Terraform’s official
documentation for more.

https://www.terraform.io/cli/commands
https://www.terraform.io/cli/commands

 | 18

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Linode Kubernetes Engine
and Terraform
Linode Kubernetes Engine (LKE) is a fully-managed container orchestration engine for deploying and managing
containerized applications and workloads. LKE combines our user-friendly interface and simple pricing with the
infrastructure efficiency of Kubernetes. When you deploy a LKE cluster, you receive a Kubernetes control plane
at no additional cost; you only pay for the Linodes (worker nodes), NodeBalancers (load balancers), and Block
Storage Volumes used to support your cluster. Your LKE cluster’s primary node runs the Kubernetes control plane
processes, including the API, scheduler, and resource controllers.

There’s a reason why Kubernetes and Terraform work so well together: Kubernetes itself is a declarative system.
When you deploy a Kubernetes cluster and modify your configuration files, you are describing the desired state
of your application and how your cluster should respond, but not the sequence of commands or events to reach
the desired state.

Typically, Kubernetes clusters are managed using kubectl or another CLI-based tool. This is great for the day-
to-day management of your clusters, but as you scale using Kubernetes, adding Terraform to your workflow
provides benefits that are not found in the other tools. HashiCorp outlines these benefits:

 · Unified Workflow: If you are already provisioning Kubernetes clusters with Terraform, use the same
 configuration language to deploy your applications into your cluster.

 · Full Lifecycle Management: Terraform doesn’t only create resources, it updates, and deletes tracked
 resources without requiring you to inspect the API to identify those resources.

 · Graph of Relationships: Terraform understands dependency relationships between resources.
 For example, if a Persistent Volume Claim claims space from a particular Persistent Volume, Terraform
 won’t attempt to create the claim if it fails to create the volume.

Ultimately, the goal is to streamline Kubernetes management by creating reusable Terraform configuration files
to define your Kubernetes cluster’s resources. Get step by step instructions on how to deploy a cluster, access
your cluster’s kubeconfig, and build applications with our guide to using LKE and Terraform.

Kubernetes also has a Terraform provider in the Terraform registry to deploy unmanaged Kubernetes clusters
using Terraform. You can deploy managed Kubernetes clusters on Linode using the Linode Terraform Provider.

If you’re new to containerization and Kubernetes, check out our Understanding Kubernetes eBook or take a free
beginner’s course on using LKE from our friends at KodeKloud.

Linode Kubernetes Engine and Terraform

https://www.linode.com/docs/guides/how-to-deploy-an-lke-cluster-using-terraform/
https://registry.terraform.io/providers/hashicorp/kubernetes/2.13.1
https://www.linode.com/content/kubernetes-guide/
https://kodekloud.com/courses/linode-kubernetes-engine/
https://kodekloud.com/courses/linode-kubernetes-engine/
https://kodekloud.com/

 | 19

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Importing Existing Linode Infrastructure
to Terraform
You don’t need to start a brand new project to begin working with Terraform. Existing Linode resources can be
imported and brought under Terraform management using the terraform import command, which imports
your existing resources into Terraform’s state. Currently, Linode resources can only be imported to Terraform
individually, and the import command does not generate a Terraform resource configuration.

State is Terraform’s stored JSON mapping of your current Linode resources to their configurations. You can
access and use the information provided by the state to manually create a corresponding resource configuration
file and manage your existing Linode infrastructure with Terraform.

After following steps to download Terraform for your OS, install the Linode Terraform provider, and enter your
Linode API access token. Here’s a brief summary of the steps you need to take to successfully import and start
managing your resource with Terraform:

 · Retrieve the resource’s ID

 · Create an empty resource configuration file

 · Run the import command to import your resource to Terraform

 · Fill in your resource’s configuration data

Note: When importing your infrastructure to Terraform, failure to accurately provide your Linode service’s ID
information can result in the unwanted alteration or destruction of the service. Utilizing multiple Terraform
Workspaces is advisable to manage separate testing and production infrastructures.

You can import the following Linode infrastructure resources to Terraform:

 · Linodes (Shared, Dedicated CPU, High Memory)

 · Kubernetes Clusters

 · Managed Database Clusters

 · Domains and Domain Records

 · Block Storage Volumes

 · Object Storage Buckets

 · NodeBalancers

Step-by-step instructions to import each type of Linode infrastructure is available on our Import Existing
Infrastructure to Terraform guide.

Importing Existing Linode Infrastructure to Terraform

https://www.linode.com/docs/guides/import-existing-infrastructure-to-terraform/
https://www.linode.com/docs/guides/import-existing-infrastructure-to-terraform/

 | 20

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Terraform Automation Options
Every company and organization has different needs in terms of workflows. Every application has its own needs
for update scheduling, deployments, and version control. Terraform can automate your infrastructure provision-
ing, but what about adding other layers of automation and more advanced insights?

The needs for more features and support services are exactly what led HashiCorp to develop a SaaS Terraform
offering, Terraform Cloud, and the self-managed Terraform Enterprise. Terraform Enterprise is offered as
a private installation, so it can be hosted on your preferred cloud provider, but there are 3 extremely important
factors to consider while weighing using Terraform Enterprise versus building your own automation:

 · Cost: It’s in the name. Terraform Enterprise is geared toward larger organizations. Though smaller
 organizations and individual developers can benefit from some features, the cost of ownership is likely
 unfeasible for smaller scales.

 · Ownership: The features and workflows in Terraform Enterprise are owned by HashiCorp, instead
 of being owned by you as the application developer.

 · Customization: A one size fits all approach to automation is unlikely to fit all of your application’s
 requirements. Building your own automation workflows allows you to figure out exactly what your
 application needs.

Though a model like Terraform Enterprise might seem more appealing to organizations that prioritize saving
time, it isn’t a viable option for most developers. Here are overviews on free automation tools and workarounds
to automate your Terraform workflows.

GitHub Actions
Coordinating changes executed by Terraform with corresponding documentation or pull requests in your GitHub
repository can add extra steps. This process can be automated using GitHub actions. Save your configuration
file that shows what Terraform changes were made, and use GitHub actions to create a pull request to add that
documented output to a branch.

Read the Terraform guides on GitHub Actions.

Terraform Automation Options

https://github.com/terraform-docs/gh-actions

 | 21

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Jenkins
Jenkins is an open source CI/CD tool and automation server. You can use Jenkins to check out Terraform scripts
based on specific parameters. Create a Terraform script that you would like to run based on certain conditions,
such as a resource trigger or at a specific time. Deploy Jenkins to an instance. You can easily do that on Linode
using our Jenkins Marketplace app. Follow the steps to install Terraform to that instance. After you set up the
options in Jenkins, it will check out .tf files from your repository using the pipeline you create. Jenkins will also
execute the Terraform script, and you’ll see the changes reflected in your cloud resources.

If you’re a new Jenkins user, get started with a free Jenkins course from FreeCodeCamp.org via their YouTube
channel. Search and install Jenkins modules on the Terraform Registry for further integration.

Curate Your Automation
When a tool steadily increases in popularity, the number of “sub-tools” or services created by other developers
also grows. View Awesome Terraform, an open source list of Terraform resources and tools recommended by
contributors.

Terraform Automation Options

https://www.linode.com/marketplace/apps/linode/jenkins/
https://www.youtube.com/watch?v=f4idgaq2VqA
https://www.youtube.com/watch?v=f4idgaq2VqA
https://registry.terraform.io/search/modules?q=jenkins
https://github.com/shuaibiyy/awesome-terraform

 | 22

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Comparing Terraform and Ansible
As the most popular IaC tools, Terraform and Ansible are often compared. Each tool serves different purposes,
and choosing one over the other ultimately depends on what you’re looking to automate. If you’re managing
a significant amount of cloud infrastructure, the answer is probably Terraform AND Ansible.

What is Ansible?
Ansible is a configuration management tool that excels in provisioning software and devices, and deploying
applications that run on that infrastructure, including continuous integration (CI) pipelines. Ansible can integrate
with cloud networks, runs on most Linux distributions, and operates on a designated instance in isolation from
the network environment where the deployment is taking place. Ansible is written in YAML and doesn’t require
specific programming knowledge to get started.

What do Terraform and Ansible have in common?
 · They are both agentless, meaning both are capable of SSH access to make changes to resources.
 Terraform and Ansible do not be installed on a specific instance.

 · Both tools are used to reduce or eliminate problems associated with manual configuration.

 · Both are easy to write and understand, and neither require experience with a particular coding language.

 · Both require read/write access to your cloud infrastructure account via an API token.

What are the primary differences?
 · Terraform is declarative whereas Ansible is procedural. Ansible allows conditional statements, including
 “when” to help specify sequences, i.e. if x service has started, do y.

 · Ansible templates are stateless. You can run the same template on repeat. Terraform’s built-in version
 control makes it a more intelligent state management tool.

 · Terraform follows a mutable infrastructure model, whereas Ansible’s default approach is immutable
 infrastructure.

 · Terraform configures infrastructure based on your cloud provider(s), i.e. plan type and region.
 Ansible configures the specifics of the infrastructure, like the OS version.

Comparing Terraform and Ansible

 | 23

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Terraform and Ansible can perform many of the same operations, but you should always select the best tool for
the tasks you want to accomplish more effectively. The following is a high-level overview on what some of the
most important aspects of cloud infrastructure management look like using Terraform and Ansible. There are
also recommendations for which tool to use based on what you’re looking to simplify or automate.

Note: The steps outlined are a brief summary of step-by-step instructions on deploying and managing Linode
infrastructure that can be found in our documentation.

Provisioning Infrastructure

Comparing Terraform and Ansible

USING TERRAFORM USING ANSIBLE

1. Install Terraform

2. Download the Linode Terraform Provider

3. Configure the Terraform environment in your
 .tf file

4. Create and add a read/write Linode API token

5. Add resource specifications

6. Initialize Terraform configuration with the
 terraform init command

Learn more.

1. Provision a control node

2. Add a limited user to your account that can access
the node

3. Install Ansible on your control node

4. Create a read/write Linode API token

5. Install Linode Ansible collection

6. Configure an Ansible Vault password file

7. Create your Ansible configuration file

8. Create an Ansible playbook using the linode.
cloud.instance Fully Qualified Collection Name

Learn more.

BEST TOOL

Terraform! As you can see in the summary of steps to provision infrastructure using
both tools, more steps and setup are required to deploy a new Linode using Ansible.
In terms of just getting infrastructure provisioned, Terraform is the most efficient tool.

https://www.linode.com/docs/guides/how-to-build-your-infrastructure-using-terraform-and-linode/
https://www.linode.com/docs/guides/deploy-linodes-using-linode-ansible-collection/

 | 24

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Configuration Management

Comparing Terraform and Ansible

Though Terraform is not a configuration management tool, it can be used with one like Ansible for a more
comprehensive solution. Terraform can provide the higher-level abstraction of the network, while Ansible’s
configuration management can be used on the individual resources.

Terraform and Ansible aren’t the only IaC tools available. In the next section, you’ll learn about more tools
and how each tool can automate or optimize different areas of your development workflow and application.

USING TERRAFORM USING ANSIBLE

Terraform provisioners should only be used as a last
result, and will add significant complexity to your
workflow instead of simplifying it.

Learn more via Terraform Docs.

1. Follow Ansible setup instructions

2. Add a limited user account

3. Create a password hash using Ansible Vault

4. Create an inventory file on your control node

5. Write a YAML playbook with the actions written
in the order they should be executed

6. Create a file in your home directory

7. Add and run the playbook from your control
machine

Learn more.

BEST TOOL

Ansible! In its simplest form, an Ansible Playbook will define a group of target hosts,
variables to use within the Playbook, a remote user to execute the tasks, and a set
of named tasks to execute using relevant Ansible modules.

https://www.terraform.io/language/resources/provisioners/syntax
https://www.linode.com/docs/guides/running-ansible-playbooks/

 | 25

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Combining IaC Tools
Terraform accomplishes the essential tasks of creating, destroying, and modifying cloud infrastructure
resources, and centralizing multicloud deployments by working with multiple cloud providers in one
environment. But there is a critical difference between the functions performed by IaC and configuration
management. Here’s a brief overview of tools you could use to perform different tasks to automate or optimize
your cloud infrastructure.

Packer
Packer is a HashiCorp-maintained open source tool that is used to create machine images. A machine image
provides the operating system, applications, application configurations, and data files that a virtual machine
instance will run once it’s deployed. Packer can be used in conjunction with common configuration management
tools like Puppet and Ansible. Packer templates store the configuration parameters used for building an image.
This standardizes the imaging building process and ensures that everyone using that template file will always
create an identical image. This helps your team maintain an immutable infrastructure.

Learn how to start using Linode and Packer to create custom images.

Pulumi
Pulumi’s CrossCode service works as a universal translation layer allowing organizations to manage their
infrastructure using an existing skill set and/or tools. This allows better integration with legacy systems that
interact with the network through the Pulumi Software Development Kit (SDK). This approach fits nicely into
DevOps culture, because development teams can specify infrastructure using well-known imperative
programming languages. It is not necessary to learn any new languages.

With Pulumi, teams can deploy to any cloud, integrate with a CI/CD system, and review changes before making
them. Pulumi provides many advanced features such as audit capabilities, built-in encryption services, and
integration with identity providers. It can take checkpoints or snapshots, and store sensitive configuration items,
such as passwords, as secrets.

Learn more about how to use Terraform versus Pulumi.

Salt
Salt (also referred to as SaltStack) is a Python-based configuration management and orchestration system.
Salt uses a master/client model in which a dedicated Salt master server manages one or more Salt minion servers.
Two of Salt’s primary jobs are remotely executing commands across a set of minions and applying Salt states to
a set of minions (referred to generally as configuration management).

Learn more about Salt with Linode’s Beginner’s Guide to Salt guide.

Combining IaC Tools

https://www.linode.com/docs/guides/how-to-use-linode-packer-builder/
https://www.linode.com/docs/guides/terraform-vs-pulumi/
https://www.linode.com/docs/guides/beginners-guide-to-salt/

 | 26

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Our Take
IT infrastructure will always be a significant spend for teams and organizations around the world.
While operating on a cloud model shifts spending from capital expenditures (CapEx) to operating expenses
(OpEx), the increased complexity of growing environments remains a major time sync for DevOps or traditional
network and system teams. IaC tools like Terraform are essential tools that enable you to remove redundant
tasks and decrease the potential for error in provisioning and changing your deployments. They also enable
a multicloud strategy and help organizations make better decisions about their cloud resources.

Next Steps
Using Terraform and IaC tools, even at a small scale, is a way to futureproof your workloads and cloud
computing strategy.

While using Linode and Terraform, you can simplify cloud infrastructure provisioning and billing for resources.
All Linode plans include generous transfer, automated Advanced DDoS Protection, and the ability to configure
Cloud Firewalls and VLAN via Linode Cloud Manager, API, or CLI at no extra cost.

Now that you understand the basics, try downloading Terraform and provisioning or importing Linode resources.

 · Set up Terraform and create new resources while following our Using Terraform to Provision Linode
 Environments guide and start using Linode with a $100 account credit.

 · Want to see the full Terraform installation and deployment process? Watch our popular Beginner’s Guide
 to Terraform video on YouTube.

 · Follow step-by-step instructions to Import Existing Linode Infrastructure to Terraform, or watch a video
 tutorial on YouTube.

 · Become a certified Terraform Associate through Hashicorp’s verified certification program.

 · Learn how to use Terraform and other IaC tools with instructor Justin Mitchel of Coding for Entrepreneurs.
 Download the comprehensive Try IaC ebook or register for the on-demand video series.

In addition to cloud providers, Terraform Providers include other tools you might already be using, including
GitHub, as well as community contributions. Explore the full Terraform Provider Registry.

For more detailed instructions and a walkthrough of all the steps needed to get started with Terraform, check out
all of our Terraform resources.

Our Take

https://www.linode.com/docs/guides/how-to-build-your-infrastructure-using-terraform-and-linode/
https://www.linode.com/docs/guides/how-to-build-your-infrastructure-using-terraform-and-linode/
https://www.linode.com/lp/terraform-ebook-resources/
https://www.youtube.com/watch?v=C3ptdKC9-EQ
https://www.youtube.com/watch?v=C3ptdKC9-EQ
https://www.linode.com/docs/guides/import-existing-infrastructure-to-terraform/
https://www.youtube.com/watch?v=l2R_tl1I7cA
https://www.youtube.com/watch?v=l2R_tl1I7cA
https://www.hashicorp.com/certification/terraform-associate
https://www.linode.com/content/try-infrastructure-as-code-ebook-series/
https://event.on24.com/eventRegistration/EventLobbyServletV2?target=reg20V2.jsp&eventid=3531652&sessionid=1&key=372BB86C884E8D39FE4916757DF20A42&groupId=3167416
https://registry.terraform.io/browse/providers
https://www.linode.com/lp/terraform-ebook-resources/
https://www.linode.com/lp/terraform-ebook-resources/

 | 27

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

About Linode

Linode cloud computing services from Akamai is one of the easiest-to-use and most trusted
infrastructure-as-a-service platforms. Built by developers for developers, Linode accelerates
innovation by making cloud computing simple, affordable, and accessible to all. Learn more
at http://linode.com or follow Linode on Twitter and LinkedIn.

About

Use other HashiCorp tools on
the most scalable cloud provider
Linode makes it easy to use other HashiCorp tools. Deploy Nomad
and Vault on the Linode Marketplace, in addition to other apps to

streamline your development workflows.

BROWSE APPS

https://www.linode.com/
https://twitter.com/linode
https://www.linkedin.com/company/linode/
https://www.linode.com/marketplace/apps/

DECLARATIVE CLOUD INFRASTRUCTURE MANAGEMENT WITH TERRAFORM

Copyright 2022 Akamai Technologies. All rights reserved.
Any trademarked names and logos are property of their respective companies.

Cloud Computing
Developers Trust

linode.com | Support: 855-4-LINODE | Sales: 844-869-6072

249 Arch St., Philadelphia, PA 19106 Philadelphia, PA 19106

