
HackerSploit:
Docker Security Essentials

A guide to auditing and securing
the Docker platform and containers

DOCKERSECURITY

02HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

All material contained herein is the Intellectual Property of
HackerSploit & Linode LLC and cannot be reproduced in any way,
or stored in a retrieval systems, or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, without the consent of HackerSploit or
Linode LLC. Please be advised that all labs and tests are to be
conducted within the parameters outlined within the text. The

use of other domains or IP addresses is prohibited.

03HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Table of Contents

Prerequisites & Requirements	 06

Technical Requirements	 06

Introduction	 07

The Docker Platform	 09

Auditing Docker Security	 11
	 What is a Security Audit?	 11
	 Docker Bench for Security	 12
	 Auditing Docker Security with Docker Bench for Security	 12

Securing The Docker Host	 14
	 Host Security	 14
	 Security Auditing with Lynis	 15
		 Installing Lynis	 15
		 Running Lynis	 16
		 Creating a User Account	 18
		 Setting Up SUDO Access	 20
		 Adding the User to the Docker Group	 20
		 Disabling root Logins	 20
		 Securing SSH	 23
		 Setting Up Key-Based Authentication with SSH	 26
		 Disable Password Authentication with SSH	 26
		 Running Lynis after Implementing Recommendations	 27
	 Setting Up Audit Rules for Docker Artifacts	 27
		 The Linux Audit Framework	 29
		 Installing Auditd	 30
		 Creating Audit Rules for Docker Artifacts	 30

04HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Table of Contents

Securing the Docker Daemon	 33
	 Implementing TLS Encryption	 33
		 Generating TLS Certificates	 33
		 Docker Daemon Configuration	 35
	 Implementing User Namespaces	 36
	 Running Docker Bench for Security after
	 Securing the Docker Daemon	 37

Container Security Best Practices	 38
	 Using an Unprivileged User	 38
	 Disabling the root User	 39
	 Preventing Privilege Escalation Attacks	 39
	 Limiting Container Capabilities	 39
	 Filesystem Permissions and Access	 40
	 Disabling Inter-Container Communication	 41

Controlling Container Resource Consumption
with Control Groups (cgroups)	 42
	 Control Group Subsystems	 43

Implementing Access Control with AppArmor	 45
	 What is AppArmor	 45
	 Confirming AppArmor is Enabled	 46
	 Installing Bane	 47
	 Creating a Custom AppArmor Profile with Bane	 47
	 Running Containers without an AppArmor Profile	 50

05HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Table of Contents

Limiting Container System Calls with seccomp	 51
	 What is a System Call?	 51
	 Why Should You Use seccomp?	 51
	 Using seccomp for Docker Containers	 52
	 Creating a Custom seccomp Profile	 52
	 Running Containers without the Default seccomp Profile	 53

Vulnerability Scanning for Docker Containers	 54
	 Scanning for Vulnerabilities with Trivy	 54

Building Secure Docker Images	 56
	 Scanning Docker Images with Dockle	 56
	 Security Best Practices for Building Docker Images	 57

Linode’s Take	 59

06HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Prerequisites & Requirements

PREREQUISITES

This guide only focuses on securing the Docker platform on Linux as it is the most widely utilized and
deployed version of the technology.

In order to to follow along with the techniques demonstrated in this guide, you need to have a Linux
server with the following services installed and running:

	 ·	 Docker

Note: The demonstrations illustrated in this guide have been performed on an Ubuntu 20.04
server running Docker CE. The commands are distribution agnostic with the exception of
package names, package managers, and the respective init systems.

TECHNICAL REQUIREMENTS

	 ·	 Fundamental knowledge of Docker and Docker CLI commands.

	 ·	 Functional knowledge of Linux terminal commands.

	 ·	 Fundamental knowledge of systemd and Linux init systems.

07HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Introduction

Given the increased adoption of Docker by individuals and companies for the containerization,
deployment, and hosting of web applications, databases, and other business critical applications,
it comes as no surprise that the process of securing the Docker platform is paramount to the
implementation and the successful long term application of the platform. The Docker platform
is deployed widely across various spectrums of use, and this increased adoption brings up various
security issues and pitfalls that plague every other technology with widespread adoption.
When a technology is widely used and implemented, the security of the platform is usually put under
a microscope as attackers constantly try to identify misconfigurations and vulnerabilities in the
technology and its implementation. Failure to configure and secure the Docker platform can result
in massive data breaches and exploitation of systems and networks.

It is for this reason that the security of the Docker platform needs to be taken seriously. This should
also necessitate the formation of a functional security policy that addresses the security issues and
misconfigurations of the platform.

The most common mistake made by individuals and companies is the assumption that the Docker
platform is secure out of the box. As with many platforms, this is not the case, and implementations
of the Docker platform need to be secured from the ground up.

Another impediment that prevents the adoption and implementation of the technology is the
abstraction and complexity of the component technologies that make up the platform. Until recently,
containers were not considered a mainstream alternative to virtual machines, primarily because of the
technical and idiosyncratic nature of containerization technologies like LXC. Docker was developed
to simplify the adoption of containerization technologies and make them available to a wider
demographic of users. To its credit, it has achieved this objective and is constantly being improved
to make the process more efficient. However, the process of securing Docker can still be unintuitive
for organizations.

This ebook aims to provide a clear and concise guide to securing the Docker platform and consequently
Docker containers at runtime. This process needs to be approached systematically and requires
a functional knowledge of the components that make up the platform, and of the two primary Linux
kernel primitives that make containerization possible: namespaces and cgroups.

08HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Introduction

The content in this guide is structured and organized as follows:

	 ·	 In The Docker Platform section, we will begin the process by explaining the various components
		 that make up the Docker platform.

	 ·	 In the Auditing Docker Security section, we will explore the process of performing a security audit
		 of the Docker platform. An audit identifies vulnerabilities in the configuration of the components
		 that make up the platform.

	 ·	 In the next two sections, we will begin the process of securing the Docker host and the Docker
		 daemon to ensure that we have a secure base to operate from:
			 ·	 Securing the Docker Host
			 ·	 Securing the Docker Daemon

	 ·	 The remaining sections of the guide will conclude by taking a look at the various ways of securing
		 containers and the process of building secure Docker images:
			 ·	 Container Security Best Practices
			 ·	 Controlling Container Resource Consumption with Control Groups (cgroups)
			 ·	 Implementing Access Control with AppArmor
			 ·	 Limiting Container System Calls with seccomp
			 ·	 Vulnerability Scanning for Docker Containers
			 ·	 Building Secure Docker Images

Let’s begin the process by taking a look at how the Docker platform is designed and organized.

09HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

The Docker Platform

Docker is a PaaS (platform as a service) containerization technology. It utilizes OS-level virtualization
that allows users to package, distribute, and deploy software, web apps, and any other type of data that
can be containerized. Docker distinguishes itself from classic level 2 hypervisors by utilizing the host OS
kernel as opposed to virtualizing an operating system for each container.

The following diagram outlines the various components that make up the platform and their
inter-connectivity.

In order to understand the process of securing the Docker daemon, we need to take a closer look at how
communication between these components is facilitated:

	 ·	 Communication between the components that make up the Docker platform is facilitated
		 through the use of several APIs.
	 ·	 The Docker client communicates with the Docker daemon through a Unix domain socket
		 or remotely through a TCP socket.
	 ·	 Commands sent from the Docker client are sent to the Docker daemon.
	 ·	 Collectively, the Docker APIs, Docker CLI, and Docker daemon are referred to together
		 as the Docker Engine.

10HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

The Docker Platform

However, Figure 1.0 is also a simplified representation of how Docker works:

	 ·	 The Docker daemon, in turn, forwards commands to Containerd, which is another daemon that
		 manages the containers and performs related functions, like pushing and pulling images and
		 container storage.
	 ·	 Containerd is an industry-standard container management solution that’s also used by other
		 platforms, like Kubernetes.
	 ·	 Communication between the Docker daemon and Containerd is facilitated through the gRPC
		 (open source remote procedure call).
	 ·	 Furthermore, Containerd itself utilizes a runtime specification, typically runc, to create and
		 manage the actual containers.

This modularization of components is not random. Docker initially bundled all functionality into
the Docker daemon, which centralized most of the functionality, consequently making it bloated
and leading to a reduction in performance. This centralized structure was later overhauled in favour
of a modularized structure, and containerd was created as part of this modularization effort. The
modularization of components also makes it much simpler to secure as each component can be
handled and secured individually.

Now that you have an understanding of how the Docker platform is structured and organized, we can
begin the process of auditing the security of the Docker host.

11HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Auditing Docker Security

The first step in the process of securing a system is to perform a security audit. An audit establishes
a baseline of the security of a system. This initial baseline will be used to guide us in accordance with
what needs to be secured.

Before we get started with the security auditing process, we need to understand what a security audit
is and why it is important in securing a system.

WHAT IS A SECURITY AUDIT?

A security audit is a systematic evaluation of the security and configuration of a particular information
system. Security audits are used to measure the security performance of a system against a list
of checks, best practices, and standards.

In the case of Docker, we will be using the CIS Docker Benchmark, which is a consensus driven security
guideline for the Docker platform. The CIS Docker Benchmark provides us with a solid set of guidelines
and checks that can be used to test the security of the Docker platform and establish a baseline security
level. More information about the CIS Docker Benchmark can be found here: https://www.cisecurity.
org/benchmark/docker/

The process of auditing the security of Docker can be automated using various tools. In this guide,
we will be using the Docker Bench for Security utility developed by Docker, Inc.

https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/

12HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Auditing Docker Security

DOCKER BENCH FOR SECURITY

Docker Bench for Security is an open source Bash script that checks for various common security best
practices of deploying Docker in production environments. The tests are all automated and are based
on the CIS Docker Benchmark. More information about Docker Bench for Security can be found
on GitHub: https://github.com/docker/docker-bench-security

Now that you have an understanding of security audit concepts and the tools and benchmarks we will
be using, we can begin the process of performing a security audit on our Docker host.

AUDITING DOCKER SECURITY WITH DOCKER BENCH FOR SECURITY

The auditing process can be performed by following the procedures outlined below:

	 1.		 You first need to clone the docker/docker-bench-security GitHub repository on your Docker 		
				 host. This can be done by running the following command:

					 git clone https://github.com/docker/docker-bench-security.git

	 2.	 After cloning the repository, you will need to navigate into the docker-bench-security 			
				 repository that you just cloned:

					 cd docker-bench-security

	 3.		 The cloned directory will contain a Bash script named docker-bench-security.sh. We can run 		
				 this script to perform the Docker security audit by running the following command:

					 sudo ./docker-bench-security.sh

	 4.		 When the script is executed, it will perform all the necessary security checks. Once completed,
			 it will provide you with a baseline security score as highlighted in the image below.

The initial baseline security score will be valued at zero, indicating that all checks failed. In this case, we
can identify what needs to be secured by analyzing the results produced by the script, as highlighted in
the image below.

SECTION C - SCORE

[INFO] Checks: 84
[INFO] Score: 0

https://github.com/docker/docker-bench-security

13HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Auditing Docker Security

Each check performed by the script is numbered and is flagged with the corresponding color code
based on whether the check was successful:

WARN: The corresponding check failed, indicating its need to be secured.
INFO: The check was run with no warning.
PASS: The corresponding check was run successfully.

The script also provides a list of recommendations regarding what components need to be secured
for every check. For example, as shown in the image below, we need to enable auditing for the Docker
daemon:

					 Note: In this context, the warning is specifically referring to using the Linux Audit
					 Framework. This topic will be introduced later, in the Setting Up Audit Rules for
					 Docker Artifacts section.

The script also sorts the results based on the following categories:

	 ·	 Host configuration
	 ·	 General configuration
	 ·	 Docker daemon configuration
	 ·	 Docker swarm configuration

This categorization of checks is very useful as it distinguishes the security of components from others,
therefore streamlining the process. The first component that we need to secure based on the results
is the Docker host. Let’s take a look at how to secure the Docker host and implement the security
practices recommended by the Docker Bench for Security tool.

Section A - Check results

[INFO] 1 - Host Configuration
[INFO] 1.1 Linux Hosts Specific Configuration
WARNING: No swap limit support
WARNING: No blkio weight support
WARNING: No blkio weight_device support
[WARN] 1.1.1 Ensure a separate partition for containers has been created (Automated)
[INFO] 1.1.2 Ensure only trusted users are allowed to control Docker daemon (Automated)
[INFO] 	 * Users: alexis
[WARN] 1.1.3 Ensure auditing is configured for the Docker daemon (Automated)
[WARN] 1.1.4 Ensure auditing is configured for Docker files and directories /run/containerd (Automated)
[WARN] 1.1.5 Ensure auditing is configured for Docker files and directories /var/lib/docker (Automated)
[WARN] 1.1.6 Ensure auditing is configured for Docker files and directories /etc/docker (Automated)

[WARN] 1.1.3 Ensure auditing is configured for the Docker daemon (Automated)

14HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Securing The Docker Host

Given the fact that Docker containers utilize the host OS kernel, the Docker platform and its containers
are only as secure as the host operating system. In this guide, our host OS is running Linux, but similar
principles should be followed for other operating systems.

HOST SECURITY

The security of the host kernel and operating system will have a direct correlation to the security of
your containers, given the fact that the containers utilize the host kernel. It is therefore vitaly important
to keep your host secure. The following guidelines outline various security best practices you should
consider when securing your Docker host:

	 1.	 Consider the use of minimal Linux distributions
			 that offer a much smaller attack surface.
	 2.	 Secure and harden your host OS.
	 3.	 Ensure your host OS is kept up to date.
	 4.	 Ensure your kernel is up to date.
	 5.	 Ensure you have the latest version of Docker running.
	 6.	 Add your host and containers to a robust vulnerability
			 management plan and constantly scan your host and
			 containers for 	vulnerabilities.
	 7. 	 Only run the services you need to run.
	 8. 	 Keep up with the latest vulnerability news for the Linux kernel
			 and the Docker platform.

The process of securing the host OS is multi-faceted and leverages multiple security audit tools in
order to establish a baseline security level. This process will result in a Docker host that satisfies the CIS
Docker Benchmark.

We will address securing the Docker host in two parts:

	 1.	 First, we will run an operating system security audit tool called Lynis. This will help us secure
			 and harden the host OS. We will implement the recommendations made by Lynis.

	 2.	 After we harden the host OS, we will return to the Docker Bench for Security to enable and set
			 up auditing for our Docker components and artifacts.

15HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Securing The Docker Host

SECURITY AUDITING WITH LYNIS

Lynis is an extensible security audit tool for computer systems running Linux, FreeBSD, macOS,
OpenBSD, Solaris, and other Unix derivatives. It assists system administrators and security professionals
with scanning a system and its security defenses, with the final goal being system hardening.

Installing Lynis

Lynis is available as a package for most Linux distributions. We can install it by running the following
command on Debian-based systems:

					 sudo apt-get install lynis

To display all the options and commands available for Lynis, we can run the following command:

					 lynis show options

Before we get started with scanning, we need to ensure that Lynis is up to date. To check if we are
running the latest version we can run the following command:

					 sudo lynis update info

dev@li560-203:~$ sudo lynis update info

== Lynis ==

Version 		 : 3.0.0
Status 			 : Up-to-date
Release date 	 : 2020-03-20
Project page 	 : https://cisofy.com/lynis/
Source code 		 : https://github.com/CISOfy/lynts
Latest package 	 : https://packages.cisofy.com/

2007-2020, CISOfy-https://cisofy.com/Lynis/

dev@li560-203:~$

16HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Securing The Docker Host

RUNNING LYNIS

To perform a system audit with Lynis, run the following command:

					 sudo lynis audit system

Lynis will output a lot of information that will also be stored under the /var/log/lynis.log file for easier
access. The summary of the system audit will reveal important information about your system’s security
posture and various security misconfigurations and vulnerabilities.

Lynis will also generate output on how these vulnerabilities and misconfigurations can be fixed or
tweaked.

Lynis security scan details:

Hardening index : 65 [############]
Tests performed : 249
Plugins enabled : 0

Components:
- Firewall			 [V]
- Malware scanner		 [X]

Scan mode:
Normal [V] Forensics [] Integration [] Pentest []

Lynis modules:
- Compliance status	 [?]
- Security audit		 [V]
- Vulnerability scan	 [V]

Files:
- Test and debug information : /var/log/lynis.log
- Report data			 : /var/log/Lynis-report.dat

17HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Securing The Docker Host

The output also contains a hardening index score that is rated out of 100. This is used to give you
a trackable tangible score of your system’s current security posture. Lynis will also display any potential
warnings that indicate a severe security vulnerability or misconfiguration that needs to be fixed
or patched. In this case, we have no warnings.

To increase our hardening index score, Lynis provides us with helpful suggestions that detail the various
security configurations we need to make.

We can now follow the recommendations provided by Lynis to secure and harden our Docker host.

-[Lynis 3.0.0 Results]

Great, no warnings

Suggestions (50):

• This release is more than 4 months old. Consider upgrading [LYNIS]
	 https://cisofy.com/lynis/controls/LYNIS/

• Set a password on GRUB boot loader to prevent altering boot configuration [BOOT
5122]
	 https://cisofy.con/Lynis/controls/B00T-5122/

• Consider hardening system services [BOOT-5264]
Details : Run ‘/usr/bin/systend-analyze security SERVICE’ for each service
	 https://cisofy.com/lynts/controls/800T-5264/

• If not required, consider explicit disabling of core dump in /etc/security/limit
	 https://cisofy.con/lynis/controls/KRNL-5820/

• Check PAM configuration, add rounds if applicable and expire passwords to encrypt
	 https://ctsofy.com/lynis/controls/AUTH-9229/

• Configure mininum encryption algorithm rounds in /etc/login. defs [AUTH-9230]
	 https://cisofy.com/lynis/controls/AUTH-9230/

• Configure maximum encryption algorithm rounds in /etc/login.defs [AUTH-9230]
	 https://cisofy.com/Lynts/controts/AUTH-9230/

18HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Securing The Docker Host

CREATING A USER ACCOUNT

We are now ready to begin securing our host OS:

	 ·	 The first step is to add and configure the necessary user accounts on the system.
	 ·	 We then need to set up the various groups that will be used to assign permissions to particular
		 users with specific roles.
	 ·	 After, we will begin specifying file permissions and assigning ownership of particular files and
		 directories. This will help us set up a system of accountability and defense in depth.

Linux has multi-user support and, as a result, multiple users can access the system simultaneously.
This can be seen as both an advantage and disadvantage from a security perspective in that multiple
accounts offer multiple access vectors for attackers and therefore increase the overall risk of the server.
To counter this concern, we must ensure that user accounts are set up and sorted accordingly in terms
of their privileges and roles. For example: Having multiple users on a Linux server with root privileges
is extremely dangerous as an attacker will only need to compromise one account to get root access
on the system. We can easily solve this issue by segregating permissions for users based on their roles.

19HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Creating a user account on Linux can be done by following the steps outlined below:

		 1.	 The useradd command creates users on your system and has this general syntax:

				 useradd <arguments> username

		 2.	 The arguments that can be included are used to specify particular information and
			 configurations for the user account. Some of these options are described in the table below:

Securing The Docker Host

		 3.	 Now that we understand the arguments we can specify or use when creating a user, let us create
			 the user account:

				 useradd -c “First Name Last Name” -m -s /bin/bash <username>

		 4.	 We have used the -c argument to specify the full name of the user, and we have used the -s
			 argument to specify that Bash should be the default shell for the new user. The -m argument
			 will create the home directory for the user. We finally end the statement with the username
			 of the account.

		 5.	 We now need to specify the password for the user account. We can do this with the following
			 command:

				 passwd <username>

		 6.	 We will then be prompted to enter a password for the user. Make sure to use a strong password
			 that follows the specification in your organization’s security policy, if applicable.

Argument Function

-c A text string that is used to include comments about the
account, like the user’s first and last name.

-m When included, this option tells the useradd command
to create a home directory for the new user.

-s Used to specify the user’s login shell (e.g.
/bin/bash, /bin/zsh, etc).

20HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

SETTING UP SUDO ACCESS

When setting up access on a Linux server, some users may require sudo access to perform
administrative tasks like updating packages and installing software. By default, users do not have sudo
access, which means they are unable to perform these administrative tasks.

Giving a user sudo access involves adding the user to a sudo-enabled group. By default, this group is just
called sudo on Debian-based systems, and on Fedora and RedHat-based systems this group is called
wheel. One way we can add the user we have just created to the sudo group by running the following
command:

				 usermod -aG sudo <username>

ADDING THE USER TO THE DOCKER GROUP

Docker implements access control for the Docker daemon through a Linux group with specific
permissions. Members of this group will have the privileges required to interact with the Docker
daemon. As a result, only authorized users that require access should be added to this group.

We can add our custom user to this group by running the following command:

				 usermod -aG docker <username>

DISABLING ROOT LOGINS

The first step in setting up local authentication security is to disable root logins . Following this step
prevents any authorized or unauthorized user from gaining access to the root user account and
consequently the server because the root user has complete power over the system.

The root user’s privileges can be abused to run any commands provided (malicious or otherwise),
including modifying the passwords of other users on the system, consequently locking them
out. Common Linux security practices recommend disabling root logins and creating a separate
administrative account, which can be assigned sudo privileges to run certain commands with root
privileges. Following this step will help mitigate the threats to the root account and will reduce the
overall attack surface of the host.

Securing The Docker Host

21HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

We can disable root logins in a few different ways. The first method of disabling root logins
is by changing the default shell of the root user from /bin/bash or /bin/sh to /usr/sbin/nologin.
This can be done by using the chsh (Change Shell) utility on Linux:

		 1.	 Run the following command:

				 sudo chsh root

		 2.	 After running the command, we will be prompted to enter the absolute path of the shell we want
			 to switch to. Specify /usr/sbin/nologin as the shell at the prompt.

		 3.	 After you have entered the absolute path to the nologin shell, we can try logging in to the root
			 account. When attempting to log in, the message

				 This account is currently not available

			 appears, and we are unable to log into the root account:

		 4.	 These changes will prevent unauthorized users from using the root account, because we have
			 not specified a valid shell. However, users with sudo privileges will still be able to run all
			 administrative commands unless the privileges are constrained to certain commands.

Note: Aside from using the chsh utility, another way to update the user’s shell is to modify
the /etc/passwd file.

Securing The Docker Host

22HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

The second method of preventing root logins is by locking the password of the root account with the
passwd utility. This will add an additional layer of security. Locking the password of an account on
Linux will not disable the account; it will simply disable local password authentication for the account.

Note: Users will still be able to login to the account remotely via SSH keys, if they have been
set up. The process of securing SSH is introduced in the next section.

We can lock the password of the root account by running the passwd command with the -l option:

				 sudo passwd -l root

If you want to unlock the password for a specific account, you can use the -u unlock option for the
passwd command:

				 sudo passwd -u root

This will unlock the password for the root account and you will be able to access the account via
password authentication.

Now that we have disabled root user logins, we will be using the custom user account that we have
created going forward. The next step in authentication security involves securing the remote access
protocol, which in most cases will be SSH.

Securing The Docker Host

SSH AUTHENTICATION

23HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

SECURING SSH

If your system did not have root password logins disabled, then any attacker could attempt to gain root
access by performing password brute-force attacks on the SSH protocol. So, it’s important to disable
root login via SSH as well.

It’s also important to do this even if you do have root password logins disabled, because it adds an extra
layer of security. Furthermore, it prevents root logins with alternative authentication methods,
like key-based authentication, which will be explored in the next section.

		 1.	 We can disable root login via SSH by modifying the OpenSSH server configuration file found
			 in /etc/ssh/sshd_config.

		 2.	 After opening the file with a text editor like nano or vim, we will be greeted with extensive
			 configuration options that we can use to modify how the SSH server will function.

Securing The Docker Host

$OpenBSD: sshd config. v 1.103 2018/04/09 20:41:22 ti Exp $

This is the sshd server system-wide configuration file. See
sshd_config(5) for more information.

This sshd was compiled with PATH=/usr/bin:/bin:/usr/sbin:/sbin

The strategy used for options in the default sshd config shipped with
OpenSSH is to specify options with their default value where
possible, but leave them commented. Uncommented options override the
default value.

#Port 22
#AddressFamily any
#ListenAddress 0.0.0.0
#ListenAddress :

#HostKey /etc/ssh/ssh host_rsa_key
#HostKey /etc/ssh/ssh_host_ecdsa_key
#HostKey /etc/ssh/ssh_host_ed25519_key

#Ciphers and keying
#RekeyLimit default none

#Logging
#SyslogFacility AUTH
#LogLevel INFO

24HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

		 3.	 To disable root login with SSH, we need to change the PermitRootLogin configuration from
			 yes to no. The authentication configurations can be found under the #Authentication
			 section. Ensure that you also uncomment the configuration to activate it by removing the
			 # symbol at the beginning of the PermitRootLogin line.

		 4.	 As you can see in the image above, we have set the option from yes to no. This will prevent users
			 from authenticating via SSH as the root user.

		 5.	 After saving the file, we now need to restart the SSH service. This can be done by running the
			 following command:

				 sudo systemctl restart sshd

		 6.	 After restarting the SSH daemon on the server, we can try logging in to the root account remotely
			 via SSH. As you can see in the image below we get a Permission Denied error even after
			 entering the correct root password. This confirms that we have successfully disabled root logins
			 via SSH.

Securing The Docker Host

#Authentication:

#LoginGraceTime 2m
#PermitRootLogin no
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10

alexis@lenovo:~$ ssh root@192.168.1.107
root@192.168.1.107’s password:
Permission denied, please try again.
root@192.168.1.107’s password:
Permission denied, please try again.
root@192.168.1.107’s password:

25HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

SETTING UP KEY-BASED AUTHENTICATION WITH SSH

Key-based authentication utilizes asymmetric encryption to generate two keys that are used for the
encryption and decryption of data. These two keys are called the public key and the private key,
and together they are called a public-private key pair.

The public key is used to encrypt data and only the corresponding private key can decrypt the data.
As a result, the private key must be kept private and secure, whereas the public key can be shared.

		 1.	 SSH key pairs can be generated on the client by using the ssh-keygen utility. We can generate
			 the key pair by running the following command:

				 ssh-keygen -t rsa

		 2.	 This will generate the public and private RSA key pair, and you will be prompted to specify the
			 directory to which you want to save the keys. You will also be prompted to specify a passphrase
			 for the key pair. This is an additional level of security that you can use to secure your key pair.

Securing The Docker Host

alexis@lenovo:~$ ssh-keygen-t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/alexis/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/alexis/.ssh/id_rsa.
Your public key has been saved in /home/alexis/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256: pT4MXs8bTIr4v/GYOZanrDdbklhTDhvx8NMMFLIVQKg alexis@lenovo
The key’s randomart image is:
+---[RSA 2048]----+
|E ..o=*o.+o |
|. .oo+oo... |
|.... o=.. |
| o+. o = |
|o .oo ooS. |
|* ...+o oo |
|oo.. o+o+o |
| . o+o+o |
| .o.. |
+----[SHA256]-----+
alexis@lenovo:~$

26HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

SETTING UP KEY-BASED AUTHENTICATION WITH SSH	

		 3.	 The key pair will be generated and saved in your ~/.ssh/ directory. In this directory, you
			 will find your public key with the .pub extension (e.g. id_rsa.pub), and your private key with
			 no file extension (e.g. id_rsa).

		 4.	 Your public key now needs to be uploaded to your server. We can do this with the ssh-copy-id
			 utility:

				 ssh-copy-id <username@SERVER-IP>

		 5.	 We are now able to log in directly without entering a user password. Note that if you previously
			 supplied a passphrase to the ssh-keygen utility, you will be prompted to enter that passphrase
			 when logging in.

DISABLE PASSWORD AUTHENTICATION WITH SSH

We can now login with our private key. The next step is to disable password authentication completely,
which will ensure that no user will be able to authenticate remotely with SSH without their respective
key pair.

		 1.	 This can be done by modifying the /etc/ssh/sshd_config OpenSSH configuration file and
			 setting the PasswordAuthentication option to no:

Securing The Docker Host

		 2.	 After saving the new changes to the OpenSSH configuration file, restart the SSH daemon:

				 sudo systemctl restart sshd

		 3.	 The SSH server will restart with the new changes applied.

We have now secured the new user account and root account from unauthorized remote access. We are
only able to login to the user account with the unique private key from the key pair we generated.

To disable tunneled clear text passwords, change to no here!
PasswordAuthentication no
#PermitEmptyPasswords no

27HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

RUNNING LYNIS AFTER IMPLEMENTING RECOMMENDATIONS

After implementing the recommendations provided by Lynis, we can run a system audit with Lynis again
to verify the application of the changes we have made.

Securing The Docker Host

As highlighted in the preceding image, our hardening index should have increased as a direct
consequence of following the security recommendations.

We can now move on the next step in securing the host, which involves setting up auditing for Docker
artifacts.

SETTING UP AUDIT RULES FOR DOCKER ARTIFACTS

During the initial Docker security audit we performed with the Docker Bench for Security utility, we were
able to identify several host configuration warnings that required us to set up audit rules for specific
Docker artifacts. Examples of these artifacts include configuration files, binaries, and systemd service
files.

We can perform the Docker Bench for Security utility again. This time, we can limit our results to the
host configuration to focus on just those checks. This can be done by running the following command:

		 	 	 sudo ./docker-bench-security.sh -c host_configuration

Lynis security scan details:

Hardening index : 72 [##############]
Tests performed : 253
Plugins enabled : 0

Components:
- Firewall			 [V]
- Malware scanner		 [V]

28HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

The script should output a list of Docker artifacts that require audit rules. Before we can enable auditing
of these artifacts, we need to further explore the concept of auditing files and objects on Linux systems.

File and object auditing allows us to log and analyze all the activity of an object. Auditing on Linux is
facilitated through the Linux Audit Framework. In the context of auditing, an object is a system resource
like a file, directory, application, or service. Docker requires us to have audit rules for core artifacts,
like the Docker daemon, in order to ensure that all activity from these artifacts is logged for security
purposes.

Securing The Docker Host

This will only run the host configuration checks and benchmarks as highlighted in the image below.

Section A - Check results

[INFO] 1 - Host Configuration
[INFO] 1.1 Linux Hosts Specific Configuration
WARNING: No swap limit support
WARNING: No blkio weight support
WARNING: No blkio weight_device support
[WARN] 1.1.1 Ensure a separate partition for containers has been created (Automated)
[INFO] 1.1.2 Ensure only trusted users are allowed to control Docker daemon (Automated)
[INFO] 	 * Users: alexis
[WARN] 1.1.3 Ensure auditing is configured for the Docker daemon (Automated)
[WARN] 1.1.4 Ensure auditing 1s configured for Docker files and directories /run/containerd (Automated)
[WARN] 1.1.5 Ensure auditing 1S configured for Docker files and directories /var/lib/docker (Automated)
[WARN] 1.1.6 Ensure auditing is configured for Docker files and directories /etc/docker (Automated)

29HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

THE LINUX AUDIT FRAMEWORK

The Linux Audit Framework is used to set up and configure auditing policies for user-space processes
like Docker. The following diagram outlines the various components that make up the Linux Audit
Framework and how they interact with each other:

Securing The Docker Host

Here’s an overview of some of The Linux Audit Framework components:
	 ·	 Auditd: The Audit daemon. This saves audit events to the audit log.
	 ·	 Audit Log: Contains event logs from all configured audit rules.
	 ·	 Auditctl: Client software that is used to manage and control the framework and is also used
		 to create or delete audit rules.
	 ·	 Audit.rules: A configuration file that contains audit rules and is accessed by auditd when the 		
		 service is restarted.

All auditing is handled by the Linux kernel. Whenever a system call is made by a user-space service like
Docker, the kernel will check the audit policy to determine whether the service in question has any audit
rules. If it does, it will send the audit event to Auditd, and consequently, Auditd will send the event log to
the audit.log for storage and analysis. Tools like aureport can be used to perform the analysis.

When Auditd is started or restarted, it will load the audit rules saved in the audit.rules file. We will take a
look at how to create audit rules in the upcoming sections.

30HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

INSTALLING AUDITD
Auditd comes pre-installed on most Linux distributions. However, if you need to install it manually, you
can use your distribution package manager. On Ubuntu and Debian based distributions, Auditd can be
installed by running the following command:

				 sudo apt-get install auditd

CREATING AUDIT RULES FOR DOCKER ARTIFACTS
The host configuration security audit we performed with Docker Bench for Security provided a list
of Docker artifacts that require auditing. We can create audit rules for these artifacts by running the
following auditctl command:

				 sudo auditctl -w <path to artifact> -k docker

The arguments in this command have the following functions:

Securing The Docker Host

We need to create audit rules for all the artifacts listed in the audit results from the Docker Bench for
Security utility:

		 1.	 In the previous Docker Bench for Security report, warnings like the following appeared:

		 	 	 Ensure auditing is configured for Docker files and directories
				 - /etc/docker

		 2.	 For this warning, create a corresponding audit rule with a command like this:

				 sudo auditctl -w /etc/docker -k docker

Argument Function

-w Used to specify the file or service to watch.

-k Used to specify the filter key, which is a short
string of text. The same key can be applied to
several different audit rules. By applying a
key, you can group different rules together,
which can be useful when analyzing and
searching through your audit logs.

31HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Securing The Docker Host

		 3.	 Create audit rules for each such warning. After creating the audit rules, we can list them
			 by running the following command:

				 sudo auditctl -l

		 4.	 This will list out all the created audit rules for the Docker artifacts. You should have similar rules
			 to the ones highlighted in the image below:

		 5.	 After creating the rules, we need to save them to the audit.rules file to make them permanent.
			 This can be done by copying and pasting the audit rules from the output of the
			 sudo auditctl -l command to the audit.rules file located in:

				 /etc/audit/rules.d/audit.rules

		 6.	 After adding the rules to the audit.rules file, you will need to restart the auditd service.
			 This can be done by running the following command:

				 sudo systemctl restart auditd

		 7.	 After restarting auditd, we can re-run the Docker Bench for Security tool to confirm that the
			 audit rules have been enabled and are active:

				 cd ~/docker-bench-security/
		 	 	 sudo ./docker-bench-security.sh -c host_configuration

alexis@localhost:~$ sudo auditctl -l
-w /usr/bin/dockerd -p rwxa -k docker
alexis@localhost:~$ sudo auditctl -w /run/containerd -k docker
alexis@localhost:~$ sudo auditctl -w /var/lib/docker -k docker
alexis@localhost:~$ sudo auditctl -w /etc/docker -k docker
alexis@localhost:~$ sudo auditctl -w /lib/systemd/system/docker service -k docker
alexis@localhost:~$ sudo auditctl -w /lib/systemd/system/docker .socket -k docker
alexis@localhost:~$ sudo auditctl -w /etc/default/docker -k docker
alexis@localhost:~$ sudo auditctl -w /etc/docker/daemon.json -k docker
alexis@localhost:~$ sudo auditctl -w /usr/bin/docker-containerd -k docker
alexis@localhost:~$ sudo auditctl -w /usr/bin/docker-runc -k docker
alexis@localhost:~$ sudo auditctl -w /us/bin/containerd -k docker
alexis@localhost:~$ sudo auditctl -w /usr/bin/containerd-shim -k docker
alexis@localhost:~$ sudo auditctl -w /usr/bin/containerd-shim-runc-v1 -k docker
alexis@localhost:~$ sudo auditctl -w /usr/bin/containerd-shim-runc-v2 -k docker
alexis@localhost:~$

32HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

		 8.	 As illustrated in the image below, the host configuration checks related to the auditing of Docker
			 artifacts should all be successful:

Securing The Docker Host

We should also have a new audit score that reflects the audit rules we have created as shown in the
image below:

Now that we have been able to successfully secure our Docker host, we can begin the process of
securing the Docker daemon.

[PASS] 1.1.3 - Ensure auditing is configured for the Docker daemon (Automated)
[PASS] 1.1.4 - Ensure auditing is configured for Docker files and directories -/run/containerd (Automated)
[PASS] 1.1.5 - Ensure auditing is configured for Docker files and directories - /var/lib/docker (Automated)
[PASS] 1.1.6 - Ensure auditing is configured for Docker files and directories - /etc/docker (Automated)
[PASS] 1.1.7 - Ensure auditing is configured for Docker files and directories - docker service (Automated)
[INFO] 1.1.8 - Ensure auditing 1s configured for Docker files and directories - container.sock (Automated)
[INFO] 	 * File not found
[PASS] 1.1.9 - Ensure auditing is configured for Docker files and directories - docker socket (Automated)
[INFO] 1.1.10 - Ensure auditing is configured for Docker files and directories - /etc/default/docker (Automated)
[INFO] 	 * File not found
[INFO] 1.1.11 - Ensure auditing is configured for Dockerfiles and directories - /etc/docker/daemon.json (Automated)
[INFO] 	 * File not found
[INFO] 1.1.12 - 1.1.12 Ensure auditing is configured for Dockerfiles and directories - /etc/containerd/config.toml (Au-
tomated)
[INFO] 	 * File not found
[INFO] 1.1.13 - Ensure auditing is configured for Docker files and directories - /etc/sysconfig/docker (Automated)
[INFO] 	 * File not found
[PASS] 1.1.14 - Ensure auditing is configured for Docker files and directories - /usr/bin/containerd (Automated)
[PASS] 1.1.15 - Ensure auditing is configured for Docker files and directories - /usr/bin/containerd-shim (Automated)

Section C - Score

[INFO] Checks: 20
[INFO] Score: 9

33HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Now that we have a secure Docker host to work with, we can begin the process of securing the Docker
daemon from the recommendations provided by the Docker Bench for Security tool.

The components that we need to implement are:
	 ·	 TLS encryption between the Docker client and daemon
	 ·	 User namespaces

We will begin the process by taking a look at how to implement TLS encryption between the Docker
client and daemon.

IMPLEMENTING TLS ENCRYPTION
As mentioned earlier in this guide, communication between the Docker client and daemon can
be performed locally through a unix domain socket or remotely through the use of a TCP socket.
This communication is not encrypted by default and, as a result, an attacker can perform a man in the
middle (MITM) attack and can intercept the commands being sent remotely from the Docker client
to the Docker daemon.

We can remedy this situation by implementing TLS encryption for remote connections. This process is
twofold and involves generating the TLS certificates for the server and the remote clients. We will begin
by taking a look at how to generate the TLS certificates for both the Docker client and server, and then
we will update the Docker daemon configuration to use the certificates.

GENERATING TLS CERTIFICATES
The process of generating TLS certificates manually can be slightly complicated. As a result, we will be
using an automated Bash script to generate the certificates for us. This can be done by following the
procedures outlined below:

		 1.	 The first step in the process involves downloading the Bash script. This can be done by running
			 the following commands:

				 cd ~
				 wget https://raw.githubusercontent.com/AlexisAhmed/
				 DockerSecurityEssentials/main/Docker-TLS-Authentication/secure-
				 docker-daemon.sh
				 chmod u+x secure-docker-daemon.sh

Securing the Docker Daemon

34HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Securing the Docker Daemon

		 3.	 The script will prompt you to enter the Docker server IP. After providing the IP address, the script
			 will automatically create the client and server certificates in the .docker/ directory as
			 highlighted in the image below:

		 2.	 After downloading the script, we can execute it by running the following command:

				 ./secure-docker-daemon.sh

			 The script will create a .docker/ directory in your user’s home directory as illustrated in the
			 image below. This is where the certificates will be stored.

alexis@localhost:~$./secure-docker-daemon.sh
you are now in /home/alexis
Directory ./docker/ does not exist
Creating the directory
type in your certificate password (characters are not echoed)
>Type in the server name you’ll use to connect to the Docker server
>139.162.230.200

alexis@localhost:~$ ls -alps .docker/
total 32
4 drwxrwxr-x 2 alexis alexis 4096 Jun 5 19:03 ./
4 dewxr-xr-X 6 alexis alexis 4096 Jun 5 19:02 ../
4 -r-------- 1 alexis alexis 1766 Jun 5 19:03 ca-key.pem
4 -r--r--r-- 1 alexis alexis 1261 Jun 5 19:03 ca.pem
4 -r--r--r-- 1 alexis alexis 1103 Jun 5 19:03 cert.pem
4 -r-------- 1 alexis alexis 1675 Jun 5 19:03 key.pem
4 -r--r--r-- 1 alexis alexis 1074 Jun 5 19:03 server-cert.pem
4 -r-------- 1 alexis alexis 1679 Jun 5 19:03 server-key.pem
alexis@localhost:~$

35HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

DOCKER DAEMON CONFIGURATION

After generating the TLS certificates, we now need to create a custom systemd configuration file for the
Docker daemon. This configuration file will be used to enable TLS and specify the TLS certificates.

		 1.	 We can create the custom systemd file with a text editor and add the TLS configuration to it.
			 Create the systemd file in your preferred text editor with a command like the following:

				 sudo mkdir /etc/systemd/system/docker.service.d/
				 sudo vim /etc/systemd/system/docker.service.d/override.conf

		 2.	 After creating and opening the file in your editor, add the following configuration to it.
			 When pasting this snippet into your file, be sure to replace the <user> string with the username
			 on your system:

				 [Service]
				 ExecStart=
				 ExecStart=/usr/bin/dockerd -D -H unix:///var/run/docker.sock 	
				 --tlsverify --tlscert=/home/<user>/.docker/server-cert.pem
				 --tlscacert=/home/<user>/.docker/ca.pem --tlskey=/home/<user>/.
				 docker/server-key.pem -H tcp://0.0.0.0:2376

		 3.	 After adding the configuration to the file, we need to save it and restart the Docker service.
			 This can be done by running the following command:

				 sudo systemctl restart docker

		 4.	 If the configuration file has been created and set up correctly, the Docker service should restart
			 with no issues.

		 5.	 You can now copy over the client TLS certificates to the remote Docker client for authentication.
			 We will not be covering this process in detail as it is beyond the scope of this guide. More 		
			 information regarding TLS authentication can be found here: https://docs.docker.com/engine/

security/protect-access/

Now that we have configured TLS encryption between the Docker client and daemon, we can move on
to implementing user namespaces for containers.

Securing the Docker Daemon

https://docs.docker.com/engine/security/protect-access/
https://docs.docker.com/engine/security/protect-access/

36HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

IMPLEMENTING USER NAMESPACES

After generating the TLS certificates, we need to create a custom systemd configuration file for the
Docker daemon. This configuration file will be used to enable TLS and specify the TLS certificates.

When we run a Docker container, the process is run from the default namespace. As a result, the process
is run under the root user as highlighted in the image below:

This can be dangerous in the event of a container breakout. Because the process is being run as the root
user, an attacker would be able to get root privileges for the host. As a result, we need to run containers
as an unprivileged user.

We need to reconfigure the Docker daemon to use user namespaces. Docker generates a default
dockremap user that you can use, or you can specify your own non-privileged user.

		 1.	 We can implement user namespaces by adding the following option to the ExecStart line in 		
			 the /etc/systemd/system/docker.service.d/override.conf file we created in the 		
			 previous section:

				 --userns-remap=”default”
				
		 2.	 Your new configuration should be structured as follows::

				 [Service]
				 ExecStart=
				 ExecStart=/usr/bin/dockerd -D -H unix:///var/run/docker.sock 	
				 --tlsverify --tlscert=/home/<user>/.docker/server-cert.pem
				 --tlscacert=/home/<user>/.docker/ca.pem --tlskey=/				
				 home/<user>/.docker/server-key.pem --userns-remap=”default” 	
				 -H tcp://0.0.0.0:2376

Securing the Docker Daemon

alexis@localhost:~$ docker container top test
UID 		 PID 			 PPID
D
root 		 17782 		 17762
in/bash
alexis@localhost:~$

37HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

		 3.	 After saving the configuration, you will need to restart the Docker service. This can be done by 		
			 running the following commands:

				 sudo systemctl daemon-reload
				 sudo systemctl restart docker

		 4.	 We can now confirm that containers will run under the default dockremap UID. Run a			
			 container and give it the name test. Then inspect the container process with this command:

				 docker container top test

		 5.	 The output from this command will resemble the following:

RUNNING DOCKER BENCH FOR SECURITY AFTER SECURING THE DOCKER DAEMON

Now that we have implemented TLS encryption and user namespaces for containers, we can re-run our
security audit with Docker Bench for Security:

				 cd ~/docker-bench-security/
		 	 	 sudo ./docker-bench-security.sh -c host_configuration

As highlighted in the image below, we should now have an improved security score which highlights the
changes we have been making.

We have been able to successfully secure the Docker daemon and can begin exploring the various ways
of securing Docker containers.

Securing the Docker Daemon

alexis@localhost:~$ docker container top test
UID 		 PID 			 PPID			 C
D
165536 		 18266 		 18243			 0
in/bash
alexis@localhost:~$

Section C - Score

[INFO] Checks: 84
[INFO] Score: 30

38HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Now that we have a secure Docker host and daemon, we can shift our attention to running containers
securely. The process of running containers securely is quite robust and will depend on your own use
cases. As a result, we have structured this section as a list of security best practices that you can use
when running containers based on your own security requirements.

USING AN UNPRIVILEGED USER

Running containers with an unprivileged user will prevent privilege escalation attacks. This can be done
by following the outline below:

		 1.	 Always reconfigure and build your own Docker images so you can customize the various security 	
			 parameters to your specification.

		 2.	 To run a Docker container as an unprivileged user, you will need to update the Dockerfile before 	
			 building the image. This can be done by adding a command like the following example to the 		
			 Dockerfile:

				 RUN groupadd -r <user> && useradd -r -g <group> <user>

		 3.	 This will add the user to the Docker image, and you can now run the container with the 			
			 unprivileged user instead of running it with the default root user. You can specify the user for a 		
			 container with the -u option for the docker run command:

				 docker run -u <user> <IMAGE-ID>

Container Security Best Practices

FROM ubuntu: 18.04

LABEL maintainer=”Alexis Ahmed”

RUN groupadd -r alexis && useradd -r -g alexis alexis

Environment Variables
ENV HOME /home/alexis
ENV DEBIAN_FRONTEND=noninteractive

root@localhost:~# docker run -u alexis -it --rm cbalba6cb267 /bin/bash
alexis@3485dfe797b4:/$

39HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Container Security Best Practices

DISABLING THE ROOT USER

As an added security measure, we can disable the root user of a container by modifying the Dockerfile.
Specifically, we can change the default shell from /bin/bash to /usr/sbin/nologin. This can be
done by adding the following command to the Dockerfile:

				 RUN chsh -s /usr/sbin/nologin root

This will prevent any user on the container from accessing the root account regardless of whether they
have the root password. This configuration is only applicable if you want to disable the root account
completely.

PREVENTING PRIVILEGE ESCALATION ATTACKS

It is recommended to run your containers with specific permissions and ensure that users cannot
escalate their privileges. To do this, use the following flag when running containers:

				 docker run --security-opt=no-new-privileges <IMAGE-ID>

The no-new-privileges option will stop container processes from gaining any additional privileges.
This will prevent commands like su and sudo from working in your container, and it can prevent
attacks that exploit SETUID binaries.

LIMITING CONTAINER CAPABILITIES

When you run a container, you can specify a set of kernel capabilities that are available to the
container. For example, a container can be given the capability of binding to a low-number port on
the host (e.g. a web server container that binds to ports 80 and 443). You also can run a container
with the --privileged flag, which gives it all of the kernel capability options. However, this is never
recommended as giving full privileges to a container will usurp any other user permission and security
restrictions you have set and open new vulnerabilities.

The recommended method for assigning privileges to a container is to first remove all of the capabilities
(also referred to as dropping the capabilities) and then only add the ones required for your container to
function. If your container does not need kernel capabilities to run, then they should all be dropped.

40HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

		 1.	 We can remove all kernel capabilities when running a container with the following options:

				 docker run --cap-drop all <IMAGE-ID>

		 2.	 You can also add the specific kernel capabilities required by your containers by running the 		
			 following command:

				 docker run --cap-drop all --cap-add <CAPABILITY> <IMAGE-ID>

Container Security Best Practices

FILESYSTEM PERMISSIONS AND ACCESS

You also have the ability to specify filesystem permissions and access, allowing you to set up containers
with a read only file system or with a temporary file system. This option is useful if you would like to
control whether your containers can store data or make changes to the filesystem.

		 1.	 We can run containers with a read-only file system by running the following command:

				 docker run --read-only <DOCKER-ID>

		 2.	 If your container has a service or application that requires the storage of data, you can specify a 	
			 temporary file system by running the following command:

				 docker run --read-only --tmpfs /tmp <DOCKER-ID>

root@localhost:~# docker run --cap-drop all --cap-add NET_ADMIN -it
--rm -u alexis c51c05657e9f /bin/bash
alexis@b377978845d0:/$

alexis@a7e5ee193740:/home$ touch test
touch: cannot touch ‘test’: Read-only file system
alexis@a7e5ee193740:/home$

41HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Container Security Best Practices

DISABLING INTER-CONTAINER COMMUNICATION

Docker creates a default bridge network, and containers are created on this network by default. All
containers on this default network can communicate with each other. However, we can also choose to
isolate Docker containers from communicating with one another. For example, this can be helpful if you
want to isolate a particular Docker container away from another connected group of containers you’re
running.		

		 1.	 In order to disable inter-container communication, we will need to create a new Docker network. 	
			 This can be done by running the following command with the “icc” option set to false.

				 docker network create --driver bridge -o
				 “com.docker.network.bridge.enable_icc”=”false” <NETWORK-NAME>

		 2.	 You can also add the specific kernel capabilities required by your containers by running the 		
			 following command:

				 docker run --network <NETWORK-NAME> <IMAGE-ID>

42HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Control groups (cgroups) are a feature of the Linux kernel that are used to isolate, limit, and account
for resource usage on a system for a set of processes. Control groups are used to isolate CPU, memory,
network, and disk usage. As with namespaces, cgroups are a kernel feature that is essential to the
Docker platform and container technologies generally. For your applications, controlling resource
consumption is important for a number of reasons:	

•	 Some applications consume a high amount of resources and need to be managed with respect to		
the host’s performance.

•	 Containers need to operate in a manner conducive to, and respective of, the performance of other 		
containers.

•	 Together, these controls help you optimize container performance generally.

•	 If a container is compromised, an attacker could utilize the resources of the container for CPU
intensive processes like cryptocurrency mining. Control groups can limit the impact of these
exploits.

By default, control groups are managed and maintained by the host’s init system, which in most cases
will be systemd. Docker utilizes cgroupfs (cgroup file system) to manage and maintain the control
groups associated with containers. Docker provides you with the ability to allocate resources for all
containers system-wide or on a container-by-container basis.

Now that we have an understanding of what control groups are and what they are used for, we can
explore the various control group subsystems utilized by Docker.

Controlling Container Resource Consumption with
Control Groups (cgroups)

43HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

CONTROL GROUP SUBSYSTEMS

Subsystems, also known as resource controllers, are used to manage and limit the usage of a specific
resource on a system. The following is a list of subsystems utilized by Docker to control resource
consumption:

	 ·	 cpu: Manages and controls access to CPU usage.
	 ·	 cpuset: Assigns processes to CPU cores.
	 ·	 memory: Controls and monitors memory usage.
	 ·	 pids: Limits the number of processes in a control group.
	 ·	 blkio: Controls block I/O operations.
	 ·	 devices: Controls access to devices.

We can use these subsystems to limit and control container resource consumption at runtime.

		 1.	 To limit container CPU usage, add the --cpus argument when running a container:

				 docker run -it --rm --cpus 0.25 <image name> /bin/bash
				
		 2.	 To limit containers to use only certain CPU cores, add the --cpuset-cpu argument when running a	
			 container:

				 docker run -it --rm --cpuset-cpus=0 <image name> /bin/bash

				 In the above example, we are limiting the container to use only the first CPU core. If
				 your Docker host has multiple cores, you can specify more than one core to use by 		
				 including a comma-separated list of core numbers as follows:

				 docker run -it --rm --cpuset-cpus=0,1 <image name> /bin/bash

				 You could also supply a range of core numbers as follows:

				 docker run -it --rm --cpuset-cpus=0-3 <image name> /bin/bash

Controlling Container Resource Consumption with
Control Groups (cgroups)

44HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Controlling Container Resource Consumption with
Control Groups (cgroups)

		 3.	 In addition to controlling CPU usage, we can also limit the memory consumption of a Docker 		
		 container by adding the -m argument when running a container::

				 docker run -it --rm -m 128m <image name> /bin/bash

				 In this example, we have limited the container to 128 MB of RAM usage. You can specify a 	
				 minimum of 4MB of RAM for each container.
		
		 4.	 Docker also provides users with the ability to specify a limit on the number of processes that a
			 container can fork. This can be very helpful in limiting the container to specific services and
			 can prevent fork bomb denial-of-service attacks. To limit the number of processes, use the 		
			 --pids-limit argument when running a container:

				 docker run -it --rm --pids-limit 5 <image name> /bin/bash

				 In this example, we have limited the container to a maximum of 5 PIDs.

		 5. You also have the ability to impose resource restrictions on containers that are already 			
		 running. This can be done by running the docker update command, as in this example:

				 docker update --cpus 0.25 <CONTAINER-ID>

				 In the above example, we have limited the CPU usage of a container to 25% of available 		
				 CPU processing power.

Now that we have an idea of how to control container resource consumption, we can take a look at how
to implement access control for Docker containers with AppArmor.

45HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Implementing Access Control with AppArmor

Access control is the process of managing and controlling access to a system resource. In the context of
containers, we need to configure what system resources and functionality the containers can access.

Linux implements access control in two forms:

1.	 Discretionary Access Control: Access to resources is specified by the resource owner. An example
of this is the implementation of file and directory permissions. This type of access control does not 		
offer much in regard to the types of resources we can restrict access to.

2.	 Mandatory Access Control: Access to resources is dependent on predefined access policies. 		
Examples of solutions that provide mandatory access control are SELinux and AppArmor.

We can manage the system resources that containers have access to with access control systems like
AppArmor.

WHAT IS APPARMOR

AppArmor (Application Armor) is a Linux security module that is used to manage access to OS resources
by utilizing custom profiles for applications and containers. AppArmor is quite extensive and can be
used to restrict access to networking and specified file paths. Mandatory Access Control solutions like
AppArmor are implemented into the Linux kernel as security modules.

46HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Implementing Access Control with AppArmor

After confirming that AppArmor is installed and enabled, you can explore the contents
of the AppArmor configuration directory found under /etc/apparmor.d/. This is the
recommended directory for storage of custom AppArmor profiles and other 					
configurations. We will be creating our AppArmor configuration files in this directory.

AppArmor is the default Mandatory Access Control system implemented in Debian-based distributions
like Ubuntu, whereas SELinux is implemented on Fedora and RedHat based distributions.

In the context of Docker, we can use AppArmor to secure containers by restricting the resources and
functionality they have access to. Docker runs containers with a default AppArmor profile that provides
a good level of protection for most cases. However, it is recommended to create your own AppArmor
profile based on your requirements and constraints.

If AppArmor is enabled for your host, Docker will utilize the default profile. You can also opt to run
containers with no AppArmor profile, but running containers with no AppArmor profile is considered
dangerous and should not be done in a production environment.

Generating a custom AppArmor profile can be tedious and time-consuming and will require a good
understanding of the requirements of the container. For this reason, we will be utilizing Bane, an open
source tool that automates the process of generating custom AppArmor profiles. More information
regarding Bane can be found here: https://github.com/genuinetools/bane

CONFIRMING APPARMOR IS ENABLED

Before we can start generating and using custom AppArmor profiles, we need to ensure that AppArmor
is installed and enabled. This can be done by running the following command:

				 aa-enabled

If AppArmor is enabled, you should receive the response text Yes, as illustrated in the 				
figure below.

alexis@localhost:~$ aa-enabled
Yes
alexis@localhost:~$

https://github.com/genuinetools/bane

47HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Implementing Access Control with AppArmor

INSTALLING BANE

Bane can be installed by following the procedures outlined below:

		 1.	 In order to install Bane, we can use the automated installer for Linux. This can be done by 		
			 running the following commands:

				 export
				 BANE_SHA256=”69df3447cc79b028d4a435e151428bd85a816b3e26199cd010c74b7
				 a17807a05”

				 sudo curl -fSL “https://github.com/genuinetools/bane/releases/		
				 download/v0.4.4/bane-linux-amd64” -o “/usr/local/bin/bane” \
				 && echo “${BANE_SHA256} /usr/local/bin/bane” | sha256sum -c - \
				 && sudo chmod a+x “/usr/local/bin/bane”

				
				 NOTE: The above commands reference Bane’s x86 executable for Linux, version v0.4.4.
				 Check the releases page for Bane on GitHub for other architectures, operating systems, or 	
				 any newer releases that are available: https://github.com/genuinetools/bane/releases

		 2.	 After running the installer script, we can confirm that Bane is installed by running the following 		
			 command:

				 bane -h

Now that we have confirmed that Bane is installed and enabled, we can take a look at how to create
custom AppArmor profiles.

CREATING A CUSTOM APPARMOR PROFILE WITH BANE

Creating a custom AppArmor profile requires a good understanding of the resources that your
containers need to access. The scope of this guide is limited to exploring the structure of an AppArmor
profile and how to use the profile when running containers. The exact details of your profiles will require
further investigation.

https://github.com/genuinetools/bane/releases

48HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Implementing Access Control with AppArmor

In this section, we will start off with an AppArmor template available on the Bane GitHub repository. You
can then customize and modify this profile as needed to meet the requirements of your container.

		 1.	 You can access and download the AppArmor profile template from GitHub: https://github.com/
genuinetools/bane/blob/master/sample.toml

			 The above commands reference Bane’s x86 executable In order to modify and generate the
			 AppArmor profile with Bane, you need to download the sample AppArmor template to the 		
			 AppArmor configuration directory found under /etc/apparmor.d/.

		 2.	 The following image highlights the sections of the AppArmor template that you will likely need to
			 modify:

https://github.com/genuinetools/bane/blob/master/sample.toml
https://github.com/genuinetools/bane/blob/master/sample.toml

49HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Implementing Access Control with AppArmor

		 3.	 In particular, you should provide the profile with a unique name as highlighted in the preceding
			 image. You can also specify the allowed executable binaries and capabilities as shown in the 		
			 image below.

		 4.	 You can also control access to networking by specifying whether you want to enable raw packet
			 connections. You also have the ability to specify the networking protocols that the container 		
			 can use. These controls are depicted in the image below:

50HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Implementing Access Control with AppArmor

		 5.	 After modifying the AppArmor profile as needed based on your container requirements, you
			 can generate the AppArmor profile for Docker with Bane. This can be done by running the 		
			 following command:

				 sudo bane <profile-name>.toml

		 6.	 Bane will generate and install the profile for you and will also provide you with the Docker
			 runtime security specification for the AppArmor profile as highlighted in the image below.

		 7.	 After generating the AppArmor profile with Bane, we can specify the AppArmor profile when
			 running a container with the --security-opt argument as follows:

				 docker run -d --security-opt=”apparmor:<profile-name>” <docker 		
				 image>

				 This will run the container with your custom AppArmor profile, and based on your profile, 	
				 the container will be limited in terms of functionality and the resources it has access to.

RUNNING CONTAINERS WITHOUT AN APPARMOR PROFILE

You also have the ability to run containers in an unconfined mode with no AppArmor profile specified.
This is not recommended as the container will have access to any functionality and resources on the
host. This can be done by running the following command:

				 docker run -d --security-opt=”apparmor:<profile-name>”

Now that we have an idea of how to generate and use custom AppArmor profiles, we can take a look at
how to limit container system calls with seccomp.

alexis@localhost:/etc/apparmor.d$ sudo bane nginx-secure.toml
Profile installed successfully you can now run the profile with
d̀ocker run --security-opt=”apparmor:docker-nginx-secure”̀
alexis@localhost:/etc/apparmor.d$

51HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Secure computing (seccomp) is a security feature in the Linux kernel that allows you to restrict the
system calls that can be made by a process. In the context of containers, seccomp works like a firewall
for system calls and can be used to restrict the system calls made by Docker containers.

WHAT IS A SYSTEM CALL?

A system call is the process through which a user-space process communicates with the Linux kernel
in order to access resources or functionality. Whenever you want to create a file, change ownership or
modify a network configuration, it is facilitated through the use of a system call.

WHY SHOULD YOU USE SECCOMP?

	 ·	 Containers do not require the ability to make all available system calls in order to function as 		
		 needed.
	 ·	 In the event a container is compromised, the attacker can make various system calls that can lead 		
		 to further exploitation of the Docker host.
	 ·	 Reducing access to system calls greatly reduces the overall attack surface of a container.

Limiting Container System Calls with seccomp

52HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

USING SECCOMP FOR DOCKER CONTAINERS

Docker utilizes the seccomp filters to restrict system calls available to containers. Docker will utilize a
default seccomp profile for Docker containers. However, you can also create a custom seccomp profile
with your own configurations. Seccomp can be configured to run for all containers or a container-to-
container basis. Lastly, you can run containers with no seccomp profile specified, leaving it unsecured,
but this is not recommended.

CREATING A CUSTOM SECCOMP PROFILE

Similar to AppArmor, creating your own custom seccomp profile for Docker will require an intimate
knowledge of the system calls utilized by your container. You can use the default Docker seccomp profile
as a starting point and modify it as needed.

		 1.	 Start by downloading the profile from GitHub: https://github.com/moby/moby/blob/master/
profiles/seccomp/default.json

		 You can store your custom seccomp profiles wherever you want. However, it is recommended to
		 use a standardized directory for all your custom profiles. Custom seccomp profiles are saved in the 	
		 .json format.

		 2.	 The following image highlights the architecture specification for the default seccomp profile:

In the seccomp profile template, the default action is to deny the container from accessing any system
calls not specified in the syscall allowlist. The image below highlights the syscall allowlist, where you
can specify what system calls you want your container to have access to. You can modify this profile
based on your requirements.

Limiting Container System Calls with seccomp

https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json

53HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

		 3.	 When saving the profile, you can save it with a file name that pertains to the functionality that it 	
			 restricts or permits.

		 4.	 We can specify the custom seccomp profile with the --security-opt option when running a 	
			 container:

				 docker run -d --security-opt
		 	 	 seccomp:/path/to/profile/profile.json <docker image>

				 This will run the container with your custom seccomp profile. Based on your
				 profile, the container will be limited to the allowlisted system calls specified in the
				 profile, which can be very useful in limiting the functionality available to users in the
				 container as well as restricting the functionality of applications.

RUNNING CONTAINERS WITHOUT THE DEFAULT SECCOMP PROFILE

You also have the ability to run containers in an unconfined mode with no seccomp profile specified.
This is not recommended, as the container will have access to all system calls available. This can be
done by running the following command:

		 	 	 docker run -d --security-opt seccomp:unconfined <docker image>

Now that you have an understanding of how to use custom seccomp profiles for your containers, we can
explore the process of performing vulnerability scans on your Docker images.

Limiting Container System Calls with seccomp

54HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Docker vulnerability scanning is the process of identifying security vulnerabilities for packages utilized
in a Docker image. This process will allow you to detect vulnerabilities in images before deploying or
running them. These vulnerabilities can then be patched or fixed in order to make the image as secure
as possible. This is a very important aspect of Docker security, primarily because all of the security
measures we have implemented can be usurped by a vulnerability in an image’s packages.

It is to be noted that this guide will only cover the process of identifying vulnerabilities in Docker images.
Patching and remediation should only be handled by the respective developer or DevOps team in
accordance with the guidelines specified by your organization.

SCANNING FOR VULNERABILITIES WITH TRIVY

In order to perform our vulnerability scans on our Docker image, we will utilize an open source third-
party tool called Trivy. Trivy is a simple and comprehensive vulnerability scanner for containers and
other artifacts. More information about Trivy can be found on GitHub: https://github.com/aquasecurity/
trivy

		 1.	 Trivy has a pre-built Docker image that can be used to perform the vulnerability scans for us, as a
			 result, we do not have to install it on our Docker host. We can pull the Trivy Docker image by
			 running the following command:

docker pull aquasec/trivy

		 2.	 After pulling the image you will need to create a cache directory for the Trivy image. This
			 directory will be used to store all the cached data:

				 mkdir -p trivy/.cache

		 3.	 After you have created the cache directory, we can perform a vulnerability scan on an image by 	
			 running the Trivy image with the following parameters:

				 docker run --rm -v trivy:/path/to/cache/.cache aquasec/trivy 		
				 <image-name>

		

Vulnerability Scanning for Docker Containers

https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json

55HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

				 Trivy will sort the results based on the vulnerability ID, severity, and the installed and
				 patched versions of the software packages affected. This information can then be passed 	
				 along to the respective teams for patching

		 5.	 After the vulnerabilities have been patched, the scan must be re-run to verify
			 that the patches have remediated the vulnerability. It is always recommended to perform regular 	
			 vulnerability scans on your images before running containers in a production environment.

You should now have an understanding of how to scan Docker images for vulnerabilities. Next, we’ll
explore the process of building secure Docker images.

Vulnerability Scanning for Docker Containers

		 4.	 This will run a vulnerability scan on the specified image. The Trivy container should output the 		
			 results of the vulnerability scan as highlighted in the image below:

56HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Building Secure Docker Images

Docker allows users and organizations to create custom images. However, images are often created
without security best practices in mind. It is vitally important to analyze your Docker images and to
identify potential misconfigurations in your Dockerfiles as these misconfigurations can be dangerous if
left unaddressed. Always follow security best practices when generating Docker images.

SCANNING DOCKER IMAGES WITH DOCKLE

The process of identifying misconfigurations in Docker images can be automated through the use of
a third party open source tool called Dockle. More information about Dockle can be found on GitHub:
https://github.com/goodwithtech/dockle

		 1.	 The Dockle Debian package can be downloaded by running the following script on the Docker 		
			 host:

				 VERSION=$(
				 curl --silent “https://api.github.com/repos/goodwithtech/dockle
				 releases/latest” | \
				 grep ‘”tag_name”:’ | \
				 sed -E ‘s/.*”v([̂ ”]+)”.*/\1/’ \
) && curl -L -o dockle.deb https://github.com/goodwithtech/		
				 dockle/releases/download/v${VERSION}/dockle_${VERSION}_Linux-		
				 64bit.deb

		 2.	 After the Dockle debian package has been downloaded, we can install it by running the following 	
			 command:

				 sudo dpkg -i dockle.deb && rm dockle.deb

		 3.	 After installing Dockle, we can begin scanning Docker images by running the following command:

				 dockle <image-name>

https://github.com/goodwithtech/dockle

57HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Building Secure Docker Images

		 4.	 Dockle will scan the image and identify misconfigurations in its Dockerfile as highlighted below:

SECURITY BEST PRACTICES FOR BUILDING DOCKER IMAGES

The following is a list of best practices you should take in to consideration when building Docker images:

	 ·	 Use minimal base images like Alpine Linux.
	 ·	 Specify the exact version of the base image instead of using the “latest” tag.
	 ·	 Reduce or remove unwanted packages from the image.
	 ·	 Avoid storing secrets and passwords in the Dockerfile.
	 ·	 Sign and verify Docker images.
	 ·	 Add an unprivileged user to the Docker image.
	 ·	 Avoid using the root user.

				 Dockle will output the list of misconfigurations and recommendations for the changes 		
				 that need to be made to the Dockerfile.

alexis@localhost:~$ dockle polinux/stress
FATAL - DKL-DI-0004: Use “apk add” with --no-cache
	 * Use-no-cache option if use ‘apk add’: /bin/sh -c apk add --update bash g++ make curl &&
curl -o /tmp/stress-${RELEASE_VERSION].tgz https://fossies.org/linux/privat/stress-${RELEASE_VER-
SION}.tar.gz 8& cd /tmp && tar
xvf stress-${RELEASE_VERSION}.tgz && rm /tmp/stress-${RELEASE_VERSION}.tgz && cd /tmp/stress-${RE-
LEASE_VERSION}
&& ./configure && make -j$(getconf _NPROCESSORS_ONLN) && make install && apk del g++ make curl &&
rm -rf /tmp
/* /var/tmp/* /var/cache/apk/* /var/cache/distfiles/*

WARN - CIS-DI-0001: Create a user for the container
	 * Last user should not be root
WARN - DKL-DI-0006: Avoid latest tag
	 * Avoid ‘latest’ tag
INFO - CIS-DI-0005: Enable Content trust for Docker
	 * export DOCKER_CONTENT_TRUST=1 before docker pull/build
INFO - CIS-DI-0006: Add HEALTHCHECK instruction to the container image
	 * not found HEALTHCHECK statement

58HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Building Secure Docker Images

The image below is an example of a Dockerfile that has been created and configured with security best
practices in mind.

FROM alpine:3.13.5

RUN addgroup -S stress && adduser -S stress -G stress

CMD [“/bin/sh”]
ENV RELEASE_VERSION=1.0.4 SHELL=/bin/bash
RUN apk add --no-cache --update bash g++ make curl \
	 && cd /tmp
	 && wet https://fossies.org/linux/privat/old/stress-1.0.4. tar.gz\
	 && tar-xzyf./tmp/stress-1.0.4.tar.gz\
	 && rm /tmp/stress-1.0.4. tar. gz \
	 && cd /tmp/stress-1.0.4’
	 && ./configure \
	 && make-j$(getconf _NPROCESSORS_ONLN)’
	 && make install ‘
	 && apk del g++ make curl \
	 && rm-rf /tmp/* /var/tmp/* /var/cache/apk/* /var/cache/distfiles/*

USER stress
CMD [“/usr/local/bin/stress”]

59HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

Linode’s Take

In cloud computing, deployments of Docker and container technologies now rival traditional Linux
virtual machines. As their capabilities and uses continue to expand and the overall use of containers
increases, it is essential to ensure that you follow these best practices to secure Docker. Having the
skills to regularly audit both new projects and existing workloads to get ahead of potential security
vulnerabilities will remain a necessity.

Making the cloud simple, affordable, accessible, and secure for developers, partners, and businesses
is core to Linode. Ensuring best practices for security creates a shared understanding of responsibility
between a cloud provider and a user. All Linode plans include generous transfer allowances, automated
Advanced DDoS Protection, and the ability to configure Cloud Firewalls and VLAN via Linode Cloud
Manager, our fully-featured API, or CLI at no extra cost.

Encouraging customers to use security best practices begins with our bundled services and the
additional educational resources and documentation we make available to raise security awareness.

When vulnerability prevention is integrated into each layer of your infrastructure and development
process, you secure application data and reduce potential technical debt while ultimately protecting
both your users and yourself.

Next Steps

•	 Watch our on-demand Docker Security Essentials series to follow HackerSploit’s practical
demonstrations and more information on the best practices outlined in this ebook.

•	 Easily deploy Docker with Linode’s Marketplace App.

•	 Keep reading about using Docker and Linode with our extensive Docker guides, including using
Docker Images, Containers, and Docker Files in Depth and a Docker Commands Cheat Sheet.
Browse all Linode docs on Docker and containers.

https://www.linode.com/event/docker-security-essentials-video-series/
https://www.linode.com/marketplace/apps/linode/docker/
https://www.linode.com/docs/guides/docker-images-containers-and-dockerfiles-in-depth/
https://www.linode.com/docs/guides/docker-commands-quick-reference-cheat-sheet/
https://www.linode.com/docs/guides/applications/containers/

60HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

About Linode

Our mission is to accelerate innovation by making cloud
computing simple, affordable, and accessible to all.

Founded in 2003, Linode helped pioneer the cloud computing industry and is today the largest
independent open cloud provider in the world. Headquartered in Philadelphia’s Old City, the company
empowers more than a million developers, startups, and businesses across its global network of
11 data centers.

61HACKERSPLOIT: DOCKER SECURITY ESSENTIALS

The World’s Largest
Independent Open Cloud

linode.com | Support: 855-4-LINODE | Sales: 844-869-6072
249 Arch St., Philadelphia, PA 19106 Philadelphia, PA 19106

https://linode.com
http://linode.com

